Math, asked by rjangral418, 2 days ago

The difference between CI and SI on a certain sum at 20% per annum for 4 year is ₹684. Find the sum. ​

Answers

Answered by krohit68654321
0

Step-by-step explanation:

answer}

sum=2500

Attachments:
Answered by AllenGPhilip
5

\underline{\bf{Question:-}}

The difference between CI and SI on a certain sum at 20% per annum for 4 year is ₹684. Find the sum. ​

\underline{\bf{Given\:that:-}}

  1. Principal (p) = ?
  2. Rate of interest = 20%
  3. Time = 4 years
  4. Difference (CI - SI) = ₹ 684

\underline{\bf{Equation\:used:-}}

\sf{:\implies{Compound\:Interest = CI=P(1+\dfrac{r}{100})^{nt}-1}}

\sf{:\implies Simple\:interest=(SI) = \dfrac{P\:\times\:I\:\times\:T}{100}}

\underline{\bf{Solution:-}}

Difference = ₹ 684 (Given)

\sf{:\implies{[P(1+\dfrac{r}{100})^{nt}-1]-[\dfrac{P\:\times\:I\:\times\:T}{100}]=684}}

\sf{:\implies{[P(1+\dfrac{20}{100})^{4}-1]-[\dfrac{P\:\times\:20\:\times\:4}{100}]=684}}

\sf{:\implies{[P(1+0.2)^{4}-1]-[\dfrac{80p}{100}]=684}}

\sf{:\implies{[P(1.2)^{4}-1]-[\dfrac{80p}{100}]=684}}

\sf{:\implies{[1.0736p]-[\dfrac{80p}{100}]=684}}

\sf{:\implies{\dfrac{(100\:\times\:1.0736p)-80p}{100}=684}}

\sf{:\implies{\dfrac{107.36p-80p}{100}=684}}

\sf{:\implies{\dfrac{27.36p}{100}=684}}

\sf{:\implies{27.36p=684\times100}}

\sf{:\implies{27.36p=68400}}

\sf{:\implies{p = \dfrac{68400}{27.36} = 2,500}}

\boxed{\bf{:\implies\:\star\:P= 2,500\:\star}}

\underline{\sf{Additional\:information:-}}

Compound interest:- It is the interest that accrues when earning for each specified period of time added to principal thus increasing the principal base on which subsequent interest is computed

Formula for compound interest

\boxed{\sf{Compound\:Interest = CI=P(1+\dfrac{r}{100})^{nt}-1}}

Where, P is the principal amount

R is the rate of interest

n is the total conversion i.e. t × no: of conversions per year

\sf{\left[\begin{array}{ccc}\underline{Conversion\:period}&\underline{description}&\underline{no:\:of conversion\:period\:in\:a\:year}\\1\:day&Comp\:daily&365\\1\:month&Comp\:monthly&12\\3\:months&Comp\:quaterly&4\\6\:months&Comp\:semi-annually&2\\12\:months&Comp\:Annually&1&\end{array}\right]}

Similar questions