Math, asked by ami81, 1 day ago

the difference between circumference and diameter of a circle is 207 cm find the radius of the circle​

Answers

Answered by pkStudyFanda
3

Answer:

The Answer is

48.36 \: cm

Step-by-step explanation:

We know that Circumference of circle =

2\pi \: r

Diameter of circle

 d = 2r

Acc to que....

2\pi \: r - 2r = 207 \\ 2r(\pi - 1) = 207 \\ we \: know \: that \: \pi = 3.14 \\ r =   \frac{207}{2 \times (3.14 - 1)}  \\  =  \frac{207}{2 \times 2.14 }  \\  =  \frac{207}{4.28}  \\  = 48.36 \: cm

Answered by Anonymous
2

Answer:

Given :

  • ➝ The difference between circumference and diameter of a circle is 207 cm.

\begin{gathered}\end{gathered}

To Find :

  • ➝ The radius of circle.

\begin{gathered}\end{gathered}

Using Formulas :

{\longrightarrow{\pink{\underline{\boxed{\sf{Circumference  \: of  \: circle = 2\pi r}}}}}}

{\longrightarrow{\pink{\underline{\boxed{\sf{Diameter  \: of \:  circle = 2r}}}}}}

  • ➝ π = 3.14
  • ➝ r = radius

\begin{gathered}\end{gathered}

Solution :

Here :

  • ➝ Circumference of circle = 2πr
  • ➝ Diameter of circle = 2r

According to the question :

{\longrightarrow{\sf{Circumference_{(Circle)} - Diameter_{(Circle)} = 207}}}

{\longrightarrow{\sf{2\pi r - 2r = 207}}}

{\longrightarrow{\sf{2r(\pi - 1) = 207}}}

{\longrightarrow{\sf{r(\pi - 1) =  \dfrac{207}{2}}}}

{\longrightarrow{\sf{r(\pi - 1) =  \cancel{\dfrac{207}{2}}}}}

{\longrightarrow{\sf{r(\pi - 1) = 103.5}}}

{\longrightarrow{\sf{r(3.14 - 1) = 103.5}}}

{\longrightarrow{\sf{r(2.14) = 103.5}}}

{\longrightarrow{\sf{r \times 2.14 = 103.5}}}

{\longrightarrow{\sf{2.14r = 103.5}}}

{\longrightarrow{\sf{r = \dfrac{103.5}{2.14}}}}

{\longrightarrow{\sf{r = \cancel{\dfrac{103.5}{2.14}}}}}

{\longrightarrow{\sf{r  \approx 48.36 \: cm}}}

{\bigstar{\red{\underline{\boxed{\sf{Radius \approx 48.36 \: cm}}}}}}

Hence, the radius of circle is 48.36 cm.

\begin{gathered}\end{gathered}

Learn More :

\begin{gathered} \boxed{\begin{array}{l}\\ \large\dag\quad\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star \: \: \sf Circle = \pi r^2 \\ \\ \star \: \; \sf Square=(side)^2\\ \\ \star\; \; \sf Rectangle=Length\times Breadth \\\\ \star \: \: \sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \: \: \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \: \: \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star \: \: \sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star \: \: \sf Parallelogram =Breadth\times Height\\\\ \star \: \: \sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star \: \: \sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

\rule{220pt}{3pt}

Similar questions