Math, asked by revasingh460, 11 months ago

The difference between compound interest and simple interest at 5% per annum in 2 years is ₹30. Find the sum

Answers

Answered by TRISHNADEVI
6

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \mathfrak{Suppose,} \\  \:  \:  \:  \:   \mathtt{ \:  \:  \:  \:  \:  \: The \:  \:  sum \:  \:  is  = P} \\   \\ \underline{ \mathfrak{ \: Given, \: }} \\  \\  \:  \:  \:  \:  \mathtt{Rate  \:  \: of \:  \:  interest, r = 5 \% \: p.a.} \\  \\   \:  \:  \:  \: \mathtt{No. \:  \:  of \:  \:  years, n = 2  \:  \: years.}</p><p>

 \underline{ \mathfrak{ \:  \: We \:  \:  know \:  \:  that,}} \\ \\  \mathtt{S.I. =  \frac{P \times r \times n}{100} } \\  \\  \mathtt{ = \frac{P \times 5 \times 2}{100}  } \\  \\  \mathtt{ =  \frac{P \times 10}{100} } \\  \\  \mathtt{ =  \frac{P}{10} }

 \underline{ \mathfrak{ \:  \: Again, \: }} \\  \\  \mathtt{C.I. = A - P } \\  \\  \mathtt{ = P(1 +  \frac{r}{100}) {}^{n}  -   P } \\  \\  \mathtt{ = P \:[ (1 +  \frac{r}{100}) {}^{n}  - 1 ] } \\  \\  \mathtt{ = P \: [(1 +  \frac{5}{100} ) {}^{2} - 1]  } \\  \\  \mathtt{ =  P \times [( \frac{105}{100} ) {}^{2} - 1 ] } \\  \\  \mathtt{ = P \times [( \frac{11025}{10000}) - 1  ]} \\  \\  \mathtt{ =  P \times ( \frac{11025 - 10000}{10000} )} \\  \\  \mathtt{ = P \times  \frac{1025}{10000}  }

\mathfrak{Now, \: } \\   \:  \:  \:  \:  \:  \:  \:  \: \underline{ \mathfrak{We  \:  \: have \:  \:  given,}} \\   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{Difference  \:  \: between \:  \:  Compound \:  \:  } \\  \bold{Interest \:  \:  and  \:  \:  Simple \:  \:  Interest \:  \:  is  \:  \: Rs. 30.}

 \underline{ \bold{ \:  \: A.T.Q., \:  \: }} \\  \\   \:  \:  \:  \:  \: \mathtt{C.I. - S.I. = 30 }  \\  \\  \mathtt{\Rightarrow P \times  \frac{1025}{10000} -  \frac{P}{10}   = 30}\:  \\  \\  \mathtt{ \Rightarrow \frac{1025 \times \: P -1000  \times \: P  }{10000} = 30 } \\  \\  \mathtt{\Rightarrow \frac{25 \times \: P }{10000}  = 30} \\  \\  \mathtt{\Rightarrow 25 \times \: P  = 300000} \\  \\  \mathtt{\Rightarrow P =  \frac{300000}{25} } \\  \\  \mathtt{ \therefore \:  \: P = 12000}

 \bold{Hence, } \\  \bold{</p><p> \:  \:  \:  \:  \:  \:  \: The \:  \:  sum \:  \:  of \:  \:  money =  \underline {\red{Rs. \:  12000}}}</p><p>

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: VERIFICATION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: We \:  \:  have, \:  \: }} \\  \\  \mathtt{P = Rs. 12000} \\  \\ \mathtt{S.I. = \frac{ P}{10} } \\  \\  \mathtt{ =  \frac{12000}{10} } \\  \\  \mathtt{ = 1200}

 \underline{ \mathfrak{ \:  \: </p><p>Again, \: }} \\  \\  \mathtt{</p><p></p><p>C.I. = P  \times  \frac{1025}{10000} } \\  \\  \mathtt{ = 12000 \times  \frac{1025}{10000} } \\  \\  \mathtt{ = 12 \times  \frac{1025}{10} } \\  \\  \mathtt{ =  \frac{12300}{10} } \\  \\  \mathtt{ = 1230}

 \mathfrak{Now,} \\  \\  \mathtt{C.I.  -  S.I. =1230 - 1200 = \underline{30} }

Answered by Anonymous
51

Step-by-step explanation:

Answer:

Rate = 5% per annum

Time = 2 years.

Sum = ?

• Difference b/w CI & SI for 2 years :

:\implies\sf Difference=\dfrac{Principal \times (Rate)^2}{100^2}\\\\\\:\implies\sf 30=\dfrac{Principal \times (5)^2}{100^2}\\\\\\:\implies\sf 30=\dfrac{Principal \times 5 \times 5}{100 \times 100}\\\\\\:\implies\sf 30=\dfrac{Principal }{20 \times 20}\\\\\\:\implies\sf 30 \times 20 \times 20 = Principal\\\\\\:\implies\underline{\boxed{\sf Principal = Rs. \:12000}}

\therefore\:\underline{\textsf{Hence, the sum is \textbf{Rs. 12,000}}}.

Similar questions