Math, asked by reddysathuik, 9 hours ago

The difference between Compound interest and Simple interest on Rs 50,000 at 5% p.a for one year is …………………… *
500
5000
0
100

Answers

Answered by Anonymous
68

Answer:

Gɪᴠᴇɴ :

  • ➛ Principle = Rs.50000
  • ➛ Rate = 5% per annum
  • ➛ Time = 1 year

\begin{gathered}\end{gathered}

Tᴏ Fɪɴᴅ :

  • ➛ Simple Interest
  • ➛ Compound Interest
  • ➛ Difference between Compound interest and Simple interest

\begin{gathered}\end{gathered}

Usɪɴɢ Fᴏʀᴍᴜʟᴀs :

\longrightarrow\small{\underline{\boxed{\pmb{\sf{ S.I = \dfrac{P \times R \times T}{100}}}}}}

\longrightarrow\small{\underline{\boxed{\pmb{\sf{A= P\bigg(1 + \dfrac{ {R}}{100} \bigg)^{T}}}}}}

\longrightarrow\small{\underline{\boxed{\pmb{\sf{{C.I=A- P}}}}}}

\longrightarrow\small{\underline{\boxed{\pmb{\sf{Difference = C.I  - S.I}}}}}

☼ Where :-

  • ➛ S.I = Simple Interest
  • ➛ A = Amount
  • ➛ P = Principle
  • ➛ R = Rate
  • ➛ T = Time
  • ➛ C.I = Compound Interest

\begin{gathered}\end{gathered}

Sᴏʟᴜᴛɪᴏɴ :

☼ Finding the simple interest by substituting the values in the formula :-

\dashrightarrow\small{\sf{ S.I = \dfrac{P \times R \times T}{100}}}

\dashrightarrow\small{\sf{ S.I = \dfrac{50000 \times 5 \times 1}{100}}}

\dashrightarrow\small{\sf{ S.I = \dfrac{50000 \times 5}{100}}}

\dashrightarrow\small{\sf{ S.I = \dfrac{250000}{100}}}

\dashrightarrow\small{\sf{ S.I =  \cancel{\dfrac{250000}{100}}}}

\dashrightarrow\small{\sf{ S.I = {Rs.2500}}}

\longrightarrow\small{\underline{\boxed{\sf{ Simple \: Interest = {Rs.2500}}}}}

∴ The simple interest is Rs.2500.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Finding amount by substituting the values in the formula :-

\dashrightarrow\small{\sf{A= P\bigg(1 + \dfrac{ {R}}{100} \bigg)^{T}}}

\dashrightarrow\small{\sf{A= 50000\bigg(1 + \dfrac{5}{100} \bigg)^{1}}}

\dashrightarrow\small{\sf{A= 50000\bigg(\dfrac{(1 \times 100) + (5 \times 1)}{100} \bigg)^{1}}}

\dashrightarrow\small{\sf{A= 50000\bigg(\dfrac{100+5}{100} \bigg)^{1}}}

\dashrightarrow\small{\sf{A= 50000\bigg(\dfrac{105}{100} \bigg)^{1}}}

\dashrightarrow\small{\sf{A= 50000\bigg( \cancel{\dfrac{105}{100}} \bigg)^{1}}}

\dashrightarrow\small{\sf{A= 50000\bigg( {\dfrac{21}{20}} \bigg)^{1}}}

\dashrightarrow\small{\sf{A= 50000\bigg( {\dfrac{21}{20}} \bigg)}}

\dashrightarrow\small{\sf{A= 50000 \times  {\dfrac{21}{20}}}}

\dashrightarrow\small{\sf{A= \cancel{50000} \times  {\dfrac{21}{\cancel{20}}}}}

\dashrightarrow\small{\sf{A= 2500 \times 21}}

\dashrightarrow\small{\sf{A= Rs.52500}}

\longrightarrow\small{\underline{\boxed{\sf{Amount= Rs.52500}}}}

∴ The amount is Rs.52500.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Finding compound interest by substituting the values in the formula :-

\dashrightarrow{\small{\sf{{C.I=A- P}}}}

\dashrightarrow{\small{\sf{{C.I=52500- 50000}}}}

\dashrightarrow{\small{\sf{{C.I=Rs.2500}}}}

\longrightarrow{\small{\underline{\boxed{\sf{{Compound \: Interest=Rs.2500}}}}}}

∴ The compound interest is Rs.2500.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Now, finding the difference between Compound interest and Simple interest :-

\dashrightarrow\small{\sf{Difference = C.I  - S.I}}

\dashrightarrow\small{\sf{Difference = 2500 - 2500}}

\dashrightarrow\small{\sf{Difference = 0}}

\longrightarrow\small{\underline{\boxed{\sf{Difference = 0}}}}

∴ The difference between Compound interest and Simple interest is 0.

\begin{gathered}\end{gathered}

Lᴇᴀʀɴ Mᴏʀᴇ :

\dashrightarrow{\small{\underline{\boxed{\sf{\purple{Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\purple{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\purple{Amount = Principle + Interest}}}}}

 \dashrightarrow\small{\underline{\boxed{\sf{\purple{ Principle=Amount - Interest }}}}}

 \dashrightarrow\small{\underline{\boxed{\sf{\purple{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\purple{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

{\underline{\overline{\rule{200pt}{2pt}}}}

Similar questions