The difference between double displacement reaction and single displacement reaction
Answers
Answer:
Up to now, we have presented chemical reactions as a topic, but we have not discussed how the products of a chemical reaction can be predicted. Here we will begin our study of certain types of chemical reactions that allow us to predict what the products of the reaction will be.
A single-replacement reaction is a chemical reaction in which one element is substituted for another element in a compound, generating a new element and a new compound as products. For example,
2 HCl(aq) + Zn(s) → ZnCl2(aq) + H2(g)
is an example of a single-replacement reaction. The hydrogen atoms in HCl are replaced by Zn atoms, and in the process a new element—hydrogen—is formed. Another example of a single-replacement reaction is
2 NaCl(aq) + F2(g) → 2 NaF(s) + Cl2(g)
Here the negatively charged ion changes from chloride to fluoride. A typical characteristic of a single-replacement reaction is that there is one element as a reactant and another element as a product.
Not all proposed single-replacement reactions will occur between two given reactants. This is most easily demonstrated with fluorine, chlorine, bromine, and iodine. Collectively, these elements are called the halogens and are in the next-to-last column on the periodic table (see Figure 4.1 “Halogens on the Periodic Table”). The elements on top of the column will replace the elements below them on the periodic table but not the other way around. Thus, the reaction represented by
CaI2(s) + Cl2(g) → CaCl2(s) + I2(s)
will occur, but the reaction
CaF2(s) + Br2(ℓ) → CaBr2(s) + F2(g)
will not because bromine is below fluorine on the periodic table. This is just one of many ways the periodic table helps us understand chemistry.
Figure 4.1 Halogens on the Periodic Table
Answer:
this is a chemistry question
Explanation:
single replacement reaction involves an element replacing another element from its compound forming a new compound and a new element. ... A double replacement reaction usually involves mixing of solutions of two ionic compounds