The difference between outside and inside surfaces of a cylindrical metallic pipe 14cm long is 44 cm². If the pipe is made of 99cm³ of metal,find the outer and inner radii of the pipe
Answers
★ Given:-
- Height of cylindrical pipe = 14 cm long
- Volume of pipe = 99cm³
- Outside surface area - inside surface area = 44cm²
★ To Find:-
- Outer radius of circle
- Inner radius of circle
★ Formula Used:-
- Surface area of Cylinder = 2πrh
- Volume of cylinder = πr²h
- Volume of hollow cylinder = πR²h - πr²h
Here,
▪︎π = 22/7
▪︎r = Radius
▪︎h = Height
★ Solution:-
Let the outer radius be x cm
Let the inner radius be y cm
So,
➥ Outside surface Area
= 2πrh
= 2 × (22/7) × x × 14
= (44 × 14x)÷7
= 88x cm²
➥ Inside surface Area
= 2πrh
= 2 × (22/7) × y × 14
= (44 × 14y)÷7
= 88y cm²
═══════◄••❀••►════════
◈ According to given conditions;
Outside surface - Inside surface = 44
➟ 88x - 88y = 44
➟ 88 ( x - y ) = 44
➟ x - y = 44 ÷ 88
∴ x - y = ½ ------ eq. 1
═══════◄••❀••►════════
➥ External volume
= πr²h
= π × x² × 14
= (22/7) × 14x²
= 44x² cm³
➥ Internal volume
= πr²h
= π × y² × 14
= (22/7) × 14y²
= 44y² cm³
═══════◄••❀••►════════
◈ According to given conditions;
Volume of metal = 99
➟ external volume - inernal volume = 99
➟ 44 x² - 44 y² = 99
➟ 44 ( x² - y² ) = 99
➟ x² - y² = 99 ÷ 44
∴ x² - y² = 9/4 ------- eq. 2
═══════◄••❀••►════════
◈ On Dividing eq. 1 and eq. 2
(x² - y²) ÷ ( x - y ) = (9/4) ÷ (1/2)
➟ ( x - y ) = (9/4) × (2/1)
➟ ( x - y ) = 9/2
∴ x - y = 9/2 ------- eq. 3
═══════◄••❀••►════════
◈ On subtracting eq. 1 from eq. 3
( x + y ) - ( x - y ) = ( 9/2) - ( 1/2)
➟ x + y - x + y = (9 - 1) ÷ 2
➟ x - x + y + y = 8 ÷ 2
➟ 2y = 4
y = 4 ÷ 2
∴ y = inner radius = 2 cm
═══════◄••❀••►════════
◈ Putting value of y in eq. 1
x - y = ½
➟ x - 2 = ½
➟ x = ½ + 2
x = 5/2
∴ x = outer radius = 2.5 cm
═══════◄••❀••►════════
★ Answer:-
- Inner radius = 2 cm
- Outer radius = 2.5 cm
═══════◄••❀••►════════
Let, R be the external radius and r be the inner radius of the metallic pipe. h=14cm
Outer surface area−inner surface area=44cm2
∴2πRh−2πrh=44cm2
∴R−r=2×722×1444=2×22×1444×7
∴R−r=21.
The volume of metal used =99cm3
∴ External volume − internal volume =99cm3
∴πR2h−πr2h=99cm3
∴πh(R2−r2)=99cm3
∴722×14(R+r)(R−r)=99cm3 [∵a2−b2=(a+b)(a−b)] and [∵R−r=1/2]
22×2(R+r)