Math, asked by Anonymous, 2 months ago

The difference between outside and inside surfaces of a cylindrical metal pipe is 14cm long is 44 Sq.cm. If the pipe is made of 99 cubic metres of metal, find the outer and inner radius of the pipe.​

Answers

Answered by Anonymous
0

Let, R be the external radius and r be the inner radius of the metallic pipe. h=14cm

 \small \bold{Outer  \: surface \:  area−inner \:  surface \:  area=44 cm^2}

 \bold{∴2πRh−2πrh=44cm^2}

 \small { \boxed{ \boxed{ \bold \red{\therefore \: R-r =  \frac{44}{2 \times  \frac{22}{7}  \times 14}  =  \frac{44 \times 7}{2 \times 22 \times 14}}}}}

 \small { \boxed{ \boxed{ \bold \green{\therefore \: R-r = \frac{1}{2} }}}}

 \small \bold{The  \: volume \:  of \:  metal  \: used =99cm^3}

 \small \bold{∴ External  \: volume − internal \:  volume =99cm^3}

 \bold{∴πR^2h−πr^2 h=99cm^3}

 \bold{∴πh(R^2 −r^2 )=99cm^3}

  \small \therefore\frac{22}{7} ×14(R+r)(R−r)=99cm^3

[∵a^2−b^2=(a+b)(a−b)] and[∵R−r=1/2]

22×2(R+r)  \frac{1}{2}  = 99 \:  {cm}^{2}

∴R+r= \frac{99}{22}  =  \frac{9}{2}

R+r= \frac{9}{2}

 \huge \frac{R - r =  \frac{1}{2} }{ \frac{2R =  \frac{10}{2} }{2R = 5} }

R =  \frac{5}{2}  = 2.5 \: cm

∴ External radius =2.5cm

R+r= \frac{9}{2}

r+2.5=4.5

r=4.5−2.5=2cm

Hence Internal radius =2cm

Similar questions