Math, asked by Anonymous, 1 month ago

The difference between outside and inside surfaces of a cylindrical metal pipe is 14 cm long is 44 cm². If the pipe is made of 99 cm³ of metal, find the outer and inner radius of the pipe.​

Answers

Answered by Anonymous
6

Step-by-step explanation:

\large  \blue{  \underline{✇ \sf \: Question:-}}

  • The difference between outside and inside surfaces of a cylindrical metal pipe is 14 cm is 44 cm²

  • Pipe is made of 99 cm³ of metal.

\large  \blue{  \underline{✇ \sf \: Solution:-}}

\red{ \sf  \Large ❏\: Let: }

  • R be the external radius
  • r be the internal radius

We have h = Length of the pipe = 14 cm.

It is given that

\bf \:  Outside \: surface \: area \:  - Internal \: surface \: area = 44  \: {cm}^{2} \\   \\ ☞ \sf \: 2 \pi Rh - 2\pi rh = 44 \\☞   \sf \: 2\pi(R - r)h = 44 \\☞   \sf \: 2 \times  \frac{22}{7} (R - r) =  \frac{44}{14}  \\ ☞ \:  \sf \:  R - r =  \cancel \frac{44 \times 7}{14 \times 22 \times 2}  \\ \\  ☞  \: \bf R - r =  \frac{1}{2}  \:  \:  \:  \:  \:    \bigg\lgroup \: eq. \: 1 \bigg \rgroup

It is given that the volume of the metal used = 99 cm³

 \bf \: External \: volume - Internal \: volume = 99  \: {cm}^{3}  \\  \\  \sf \: ✏ \: \pi  {R}^{2}h -  \pi   {r}^{2}  h = 99 \\✏  \sf\pi( {R}^{2}  -  {r}^{2} )h = 99 \\ ✏ \sf \:  \frac{22}{7} (R + r)(R - r) \times 14 = 99 \\  ✏\sf \:  \frac{22}{7}  \times (R + r) \times  \frac{1}{2}  \times 14 = 99 \:  \:  \:  \{  using \: (i) \} \\  ✏\sf \: R + r =  \cancel \frac{99 \times 2 \times 7}{22 \times 14}  \\  \\ ✏ \bf \: R + r =  \frac{9}{2}  \:  \:  \:  \bigg \lgroup \: eq. \: 2 \bigg \rgroup

Adding eq. 1 and eq. 2

 \sf R - r = \dfrac{1}{2}

 \sf R + r = \dfrac {9}{10}

_____________

 \sf 2R = 5

 \Large \pink{\frak{R = 2.5 cm}}

Putting the value of R in eq. 2

\sf R + r = \frac{9}{2} \\ \Large \purple{\frak{r = 2 cm}}

 \bf \therefore ❒ Outer \:radius \:and \:Inner\: radius\: are\: 2.5 \:cm \:and\: 2\: cm\: respectively.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions