Math, asked by madhavitvvs, 3 days ago

The difference between outside and inside surfaces of a cylindrical metallic pipe 14 cm long is 44 cm². If the pipe is made of 88 cm³ of metal, find the outer and inner radii of the pipe.​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Let assume that,

Inner radius of metallic cylindrical pipe = r cm

Outer radius of metallic cylindrical pipe = R cm

Height, h = 14 cm.

Now, According to statement

The difference between outside and inside surfaces of a cylindrical metallic pipe 14 cm long is 44 cm²

\rm \: 2\pi \: Rh \:  -  \: 2\pi \: rh \:  =  \: 44 \\

\rm \: 2\pi \: h(R -  r)=  \: 44 \\

\rm \: 2 \times \dfrac{22}{7}  \times 14 \times (R -  r)=  \: 44 \\

\rm \: 2  (R -  r)=  \: 1 \\

\rm\implies \:R - r = \dfrac{1}{2} -  -  - (1) \\

Again given that, the pipe is made of 88 cm³ of metal.

\rm \: \pi( {R}^{2} -  {r}^{2})h \:  =  \: 88 \\

\rm \: \dfrac{22}{7}(R + r)(R - r) \times 14 = 88 \\

\rm \: 44(R + r)(R - r) = 88 \\

\rm \: (R + r)(R - r) = 2 \\

\rm \: (R + r) \times  \dfrac{1}{2}  = 2 \\

\rm\implies \:R + r = 4  -  -  - (2) \\

On adding equation (1) and (2), we get

\rm \: 2R = 4 +  \dfrac{1}{2}  \\

\rm \: 2R = \dfrac{8 + 1}{2}  \\

\rm \: 2R = \dfrac{9}{2}  \\

\rm\implies \:\rm \: R = \dfrac{9}{4}  \\

On substituting R in equation (1), we get

\rm \: \dfrac{9}{4}  - r = \dfrac{1}{2}

\rm \: r = \dfrac{9}{4}  -  \dfrac{1}{2}

\rm \: r = \dfrac{9 - 2}{4}

\rm\implies \:\rm \: r = \dfrac{7}{4}  \\

So, we have

\rm \: Outer \: radius \: of \: metallic \: cylindrical \: pipe =  \dfrac{9}{4} \: cm  \\

and

\rm \:Inner \: radius \: of \: metallic \: cylindrical \: pipe =  \dfrac{7}{4} \: cm  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions