the difference between polarised and non polarised capacitor
Answers
Answered by
0
The main difference is what they're made of. Incidentally, that also determines how big they have to be for a given capacitance, and how much they cost.
Polar capacitors are also known as electrolytic capacitors, because they use an electrolyte as the dielectric. It allows for extremely high capacitance with some small leakage current in a small package. A ceramic capacitor with equivalent capacitance would have to be very, very large.
There are lots of different kinds of non-polar capacitors. The two most common ones I've seen are ceramic and mica. Ceramic is cheap, mica is more expensive, but I believe mica capacitors can take a higher voltage. Altogether, they offer lower leakage current than electrolytics but also lower capacitance per size. The main advantage is that they maintain their capacitance with bias in both directions.
Electrolytic capacitors are useful in places where the voltage will never switch polarity on them under proper use conditions. Their high capacitance means they can be used more effectively for power supply filtering, reducing ripple in a rectifier, and softening on/off switching.
Polar capacitors are also known as electrolytic capacitors, because they use an electrolyte as the dielectric. It allows for extremely high capacitance with some small leakage current in a small package. A ceramic capacitor with equivalent capacitance would have to be very, very large.
There are lots of different kinds of non-polar capacitors. The two most common ones I've seen are ceramic and mica. Ceramic is cheap, mica is more expensive, but I believe mica capacitors can take a higher voltage. Altogether, they offer lower leakage current than electrolytics but also lower capacitance per size. The main advantage is that they maintain their capacitance with bias in both directions.
Electrolytic capacitors are useful in places where the voltage will never switch polarity on them under proper use conditions. Their high capacitance means they can be used more effectively for power supply filtering, reducing ripple in a rectifier, and softening on/off switching.
Similar questions