Math, asked by Anonymous, 7 months ago

the difference between SI and cI on a certain sum for 2years at 5% per annum is rs26 find the sum.


don't spam ​

Answers

Answered by prince5132
4

GIVEN :-

  • C.I - S.I = Rs. 26
  • Rate , R = 5% Per annum.
  • Time , T = 2 years.

TO FIND :-

  • The sum , P.

SOLUTION :-

Let the sum be "x".

Now as we know that this formula of simple interest is given by,

 \\  :  \implies \displaystyle \sf \: S.I =  \frac{P \times R \times T}{100}  \\  \\  \\

  :  \implies \displaystyle \sf \: S.I =  \frac{x \times 5 \times 2}{100}  \\  \\  \\

  :  \implies \displaystyle \sf \: S.I =  \frac{10x}{100}  \\  \\  \\

  :  \implies  \underline{ \boxed{\displaystyle \sf \: S.I =  \frac{x}{10} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg \lgroup \displaystyle \sf \:Equation \: 1\bigg \rgroup \\  \\

Now as we know that the formula for finding the compound interest is given by,

 \\   :  \implies \displaystyle \sf \: C.I  = P\Bigg[\bigg(1 + \dfrac{R}{100} \bigg)^{n} - 1\Bigg] \\  \\  \\

 :  \implies \displaystyle \sf \: C.I  = x\Bigg[\bigg(1 + \dfrac{5}{100} \bigg)^{2} - 1\Bigg] \\  \\  \\

 :  \implies \displaystyle \sf \: C.I  = x\Bigg[\bigg( \dfrac{100 + 5}{100} \bigg)^{2} - 1\Bigg] \\  \\  \\

 :  \implies \displaystyle \sf \: C.I  = x\Bigg[\bigg( \dfrac{105}{100} \bigg)^{2} - 1\Bigg] \\  \\  \\

 :  \implies \displaystyle \sf \: C.I  = x\Bigg[\bigg( \dfrac{105 \times 105}{100 \times 100} \bigg)- 1\Bigg] \\  \\  \\

 :  \implies \displaystyle \sf \: C.I  = x\Bigg[\dfrac{11025}{10000} - 1\Bigg] \\  \\  \\

 :  \implies \displaystyle \sf \: C.I  = x\Bigg[\dfrac{11025 - 10000}{10000} \Bigg] \\  \\  \\

 :  \implies \displaystyle \sf \: C.I  = x\Bigg[\dfrac{1025}{10000} \Bigg] \\  \\  \\

 :  \implies \underline{ \boxed{ \displaystyle \sf \: C.I  = \frac{1025x}{10000} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg \lgroup \displaystyle \sf \:Equation \: 2\bigg \rgroup \\  \\

Now , According to question we have the difference between the compound interest and the simple interest . So,

 \\  :  \implies \displaystyle \sf \: C.I   - S.I = 26 \\  \\  \\

 :  \implies \displaystyle \sf \: \frac{1025x}{10000}  -  \frac{x}{10}  = 26 \\  \\  \\

 :  \implies \displaystyle \sf \: \frac{1025 x- 1000x }{10000}  = 26 \\  \\  \\

 :  \implies \displaystyle \sf \: \frac{25x}{10000}  = 26 \\  \\  \\

 :  \implies \displaystyle \sf \:25x = 26 \times 10000 \\  \\  \\

 :  \implies \displaystyle \sf \:25x = 260000 \\  \\  \\

 :  \implies \displaystyle \sf \:x =  \frac{260000}{25}  \\  \\  \\

 :  \implies \underline{ \boxed{ \displaystyle \sf \:x = 10400}} \\  \\

Hence the required sum of money is Rs. 10400

Similar questions