Math, asked by sonalginni4, 9 months ago

The difference between simple interest and
compound interest is Rs. 256 and the principal
amount has been invested for 2 years at the rate of
8%. What could be the principal amount?​

Answers

Answered by BrainlyConqueror0901
11

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Principal=40000\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\ \tt: \implies C.I- S.I= 256 \: rupees \\  \\  \tt: \implies Rate\% (r)= 8\% \\  \\ \tt: \implies Time(t) = 2\: years \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt: \implies Principal =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies S.I =  \frac{p \times r \times t}{100}  \\  \\ \tt:  \implies S.I= \frac{p \times 8 \times 2}{100}  \\  \\ \tt:  \implies S.I=0.16p -  -  -  -  - (1) \\  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies A= p(1 +  \frac{r}{100} )^{t}  \\  \\ \tt:  \implies A= p \times (1 +  \frac{8}{100} )^{2}  \\  \\ \tt:  \implies A =p \times (1 + 0.08)^{2}  \\  \\ \tt:  \implies A =p \times 1.1664p-  -  -  -  - (2) \\  \\  \bold{for \: compound \: interest} \\ \tt:  \implies C.I=A - p \\  \\ \tt:  \implies C.I= 1.1664p - p \\  \\ \tt:  \implies C.I=0.1664p -  -  -  -  - (3) \\  \\ \bold{For \: Difference : } \\ \tt:  \implies C.I- S.I = 256 \\  \\ \tt:  \implies 0.1664p - 0.16p = 256  \\  \\ \tt:  \implies 0.0064 p = 256 \\  \\ \tt:  \implies p =  \frac{256}{0.0064}  \\  \\  \green{\tt:  \implies p = 40000 \: rupees}

Answered by Anonymous
7

The difference between simple interest and

compound interest is Rs. 256 and the principal

amount has been invested for 2 years at the rate of

8%. What could be the principal amount?

Answer ∆

\implies S.I.= \frac{P×P×T}{100}\\ \implies  S.I= \frac{P×16}{100}\\ \implies S.I= 0.16p--eq(1)

So,

\rightarrow A=p 1+(\frac{r}{100})^n  Amount = A=p×(1+0.08)^2 \\ \rightarrow  A=p×1.664p---eq(2)

★ Compound intrest (C.I)

\rightarrow C.I=A-P\\ \rightarrow   C.I= p-1.664p \\ \rightarrow C.I=0.0064p-------eq(3)

Difference

\rightarrow C.I-S.I=256 \\ \rightarrow 0.1664p-0.16p=256\\\rightarrow  p=\frac{256}{0.0064}\\\rightarrow p= 4000

\implies\red{\underline{\fbox{P= 4000}}}

Similar questions