Math, asked by aravind69, 8 months ago

the difference between simple intrest and compound intrest on a sum for 3 years when the rate of intrest is 15% p.a is rs 720 what is priciple amount​

Answers

Answered by mddilshad11ab
173

\sf\large\underline\green{Let:}

\sf{\implies The\:sum\:be\:P}

\sf\large\underline\green{To\: Find:}

\sf{\implies The\:sum=?}

\sf\large\underline\green{Solution:}

  • To calculate the sum , at first we have to calculate simple interest and compound interest separately then calculate the sum with the help calculating sum:]

\sf\small\underline\red{Calculation\:for\:(SI):}

\sf\small\underline{Here,\:\:P=P\:\:,T=years\:\:,R=15\%:}

\tt{\implies SI=\dfrac{P*T*R}{100}}

\tt{\implies SI=\dfrac{P*3*15}{100}}

\tt{\implies SI=\dfrac{9P}{20}}

\sf\small\underline\red{Calculation\:for\:(CI):}

\sf\small\underline{Here,\:\:P=P\:\:,T=years\:\:,R=15\%:}

\tt{\implies CI=P\bigg(1+\dfrac{r}{100}\bigg)^n-P}

\tt{\implies CI=P\bigg(1+\dfrac{15}{100}\bigg)^3-P}

\tt{\implies CI=P\bigg(\dfrac{100+15}{100}\bigg)^3-P}

\tt{\implies CI=P\bigg(\dfrac{115}{100}\bigg)^3-P}

\tt{\implies CI=P\bigg(\dfrac{23}{20}\bigg)^3-P}

\tt{\implies CI=\dfrac{12167P}{8000}-P}

\tt{\implies CI=\dfrac{12167P-8000P}{8000}}

\tt{\implies CI=\dfrac{4167P}{8000}}

  • Calculate Principal with help of given difference (SI-CI) here the given difference is Rs.720:]

\sf\blue{\implies Difference\:_{(CI-SI)}=720}

\tt{\implies CI=\dfrac{4167P}{8000}-\dfrac{9P}{20}=720}

\tt{\implies CI=\dfrac{4167P-3600P}{8000}=720}

\tt{\implies CI=\dfrac{567P}{8000}=720}

\tt{\implies CI=63P=640000}

\tt{\implies CI=P=10158.7302}

\sf\large{Hence,}

\sf\green{\implies The\:sum=Rs.10158.7302}

Answered by Anonymous
109

\bf\red{Answer - }

\sf\pink{Given - }

T = 3 years.

R = 15%

CI - SI = Rs. 720

where

\longrightarrowT is time period.

\longrightarrowR is rate of interest.

\longrightarrowCI is compound interest.

\longrightarrowSI is simple interest.

━━━━━━━━━━━━━

\sf\pink{To \: find - }

Principle/Sum \longrightarrow S

━━━━━━━━━━━━━

\sf\pink{Formula \: used - }

\boxed{\bf SI = \dfrac{PRT}{100}}

\boxed{\bf CI = P(1 +  \dfrac{R}{100} ) ^{n}-P}

━━━━━━━━━━━━━

\bf\pink{Solution -}

Calculating Simple interest -

\longrightarrowT = 3 years.

\longrightarrowR = 15%

\sf SI = \dfrac{PRT}{100}

\implies\sf SI = \dfrac{P \times 3 \times 15}{100}

\implies\sf\pink{ SI = \dfrac{9P}{20}}

━━━━━━━━━━━━━

Calculating Compound interest -

\longrightarrowT = 3 years.

\longrightarrowR = 15%

\sf CI = P(1 +  \dfrac{R}{100} ) ^{n} - P

\implies\sf CI = P(1 +  \dfrac{R}{100} ) ^{n} - P

\implies\sf CI = P(1 +  \dfrac{15}{100} ) ^{3} - P

\implies\sf CI = P(\dfrac{115}{100} )^3 - P

\implies\sf CI = P (\dfrac{23^3}{20^3}) - P

\implies\sf CI = P(\dfrac{11267}{8000})  - P

\implies\sf CI = P(\dfrac{11267 - 8000}{8000})

\implies\sf\pink{ CI = P(\dfrac{4167}{8000})}

━━━━━━━━━━━━━

The difference of Compound and simple interest is equal to Rs. 720.

\implies\tt 720 = \dfrac{4167P}{8000} - \dfrac{9P}{20}

\implies\tt 720 = \dfrac{4167P}{8000} - \dfrac{3600P}{8000}

\implies\tt 720 = \dfrac{4167P - 3600P}{8000}

\implies\tt 720 = \dfrac{567P}{8000}

\implies\tt 720 \times 8000 = 567P

\implies\tt P = Rs. 10158.73

\bf\red{Principle\: amount = Rs. 10158.73}

━━━━━━━━━━━━━

Similar questions