Math, asked by smoney74139164, 3 months ago


The difference between the compound interest and simple interest for 2. year at 5% per annum on a certain sum of money is ₹12 find the sum​

Answers

Answered by ImperialGladiator
15

Answer :

The sun is 4,800

Step-by-step explanation :

Question says that,

(C. I. - S. I.) is ₹12 at the rate of 5% p. a. (per annum) for 2 years.

Find the sum.

Let's suppose the sum is ₹p

Step 1 : Calculate the S. I. :

\longrightarrow S. I. = \dfrac{p \times r \times t }{100}

Where,

  • p denotes the principal ₹p
  • r denotes rate 5%
  • t denotes time 2 years.

So,

\longrightarrow S. I. = \dfrac{p \times 5\% \times 2 }{100}

\longrightarrow S. I. = \dfrac{10p}{100}

\longrightarrow S. I. = \dfrac{1p}{10}

Step 2 : Calculate the C. I. :

While calculation of C. I. the rate and time will remain same i.e., 5% and 2 years respectively.

We know that,

{ \underline{ \boxed{ \sf C. I. = Amount - principal }}}

{ {{\longrightarrow C. I. = p \bigg(1 +  \dfrac{r}{100} \bigg)^{n} - p }}}

 \longrightarrow C. I. = p { \bigg(1 +  \dfrac{5}{100} \bigg) }^{2}   - p \\

\longrightarrow C. I. =p \bigg( \dfrac{21}{20}  { \bigg)}^{2} - p  \\

 \longrightarrow C. I. = \dfrac{441p}{400}  - p \\

\longrightarrow C. I. = \dfrac{441p - 400}{400}  \\

\longrightarrow C. I. = \dfrac{41p}{400} \\

Step 3 : Calculate the sum :

Given,

 \implies \bigg( \dfrac{41p }{400}\bigg)  -  \bigg( \dfrac{1p}{10}  \bigg)= 12  \\

A/q,

 \implies  \dfrac{41p }{400} -  \dfrac{1p}{10}  = 12   \\

\implies \dfrac{41p - 40p}{400}  = 12 \\

\implies  \dfrac{1p}{400}  = 12 \\

\implies p = 12 \times 400 \\

\implies  p = 4800 \\

Therefore, the sum is 4,800

_____________________

Related formulae :

  • S. I. = \dfrac{p \times r \times t}{100}
  • \sf C. I. = Amount - principal
  • {\sf {Amount }}= p\bigg(1 + \dfrac{r}{100}\bigg)^n

_____________________

Key words :

  • C. I. = compound interest.
  • S. I. = Simple interest.
  • p = principal.
  • t = time.
  • r = rate.
Answered by diajain01
77

{\boxed{\underline{\tt{ \orange{Required \:  \: answer:-}}}}}

GIVEN:-

  • N = 2 YEARS.

  • R = 5 %

TO USE:-

{ \boxed{ \underbrace{ \bold{ \huge{S.I. =  \frac{P  \: N  \: R  }{100} }}}}}

SOLUTION :-

 : \longrightarrow \:{ \bold{  \frac{P\times 2 \:  \times  \: 5}{100} }}

 : \longrightarrow \: { \bold{ \frac{10 P}{100}  = \blue { 0.1 P}}}

And on interest being compounded for

2 years

R = 5%,

Amount = ??

 \longmapsto \: P {(1 +  \frac{R}{100} )}^{ \:N }

 \longmapsto \: P {(1 +  \frac{5}{100} )}^{2}

 \longmapsto \:P \times  {(1.05)}^{2}

 : \longrightarrow { \purple{ \bold{\:1.1025 P}}}

SO,

⇝ C.I. = A - P

⇝ 1.1025P - P

0.1025 P

GIVEN, C.I - S.I = Rs 12

⫸ 0.1025P - 0.1 P = Rs 12

⫸ 0.0025 P = Rs 12

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\boxed{\underline{\pink{ P = Rs 4,800}}}}

______________________________________________★

MORE TO KNOW:-

  • A = P (1+ r/n)^nt

  • C.I. = P(1 + R/100)^n -P

  • I = Prt

  • C = P [(1+r)^n -1]

  • S.I. = P × R × T /100

  • Amount = Principal + Compound Interest.

★HERE,

C -- Compound Interest.

P -- Principal (original balance)

r -- rate per period

n -- number of periods

P -- principal sum

T -- time

A -- Future value

Similar questions