Math, asked by davidgurung76, 7 months ago

The difference between the compound interest and the simple interest on a certain sumbfor 3 years at 10% per annum is Rs. 93. Findnthe sum.

Answers

Answered by sureshiyshsri
1

The answer is ₹3000

hope this help and please mark this as brainliest

Answered by Anonymous
97

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge\frak{\underline{\underline{\pink{Question:-}}}}

  • The difference between the compound interest and simple interest on a certain sum for 3 years at 10% per annum is Rs. 93. Find the sum.

\huge\frak{\underline{\underline{\pink{Answer:-}}}}

  • The sum = ₹3000.

\large\bold{\underline{Solution:}}

Let the sum be P.

Formula to find simple interest :-

\green\large{\boxed{{\rm{ \star \: \:I = P \times r \times t}}}}

:\implies\:\: \large\rm{R = 10 = 0.1}

:\implies\:\: \large\rm{T=3}

Simple interest :-

:\implies\:\: \large\rm{I_1 = P \times 0.1 \times 3 = 0.3 P}

Formula for compound interest :-

:\implies\:\: \large\rm{I = P(t + 3)^t - P}

Compound interest :-

:\implies\:\: \large\rm{I_2 = P (1+0.1)^3 - P }

:\implies\:\: \large\rm{P (1.1)^3 - P }

:\implies\:\: \large\rm{ 1.331 \:P - P}

:\implies\:\: \large\rm{0.331\: P }

\large\bold{\underline{According \:to\:the\:Question:}}

:\implies\:\: \large\rm{I_2 - I_1 = 93}

:\implies\:\: \large\rm{0.331 P - 0.3 P = 93}

:\implies\:\: \large\rm{0.031 P = 93}

:\implies\:\: \large\rm{P =  \dfrac{93}{0.031} = 3000}

∴ Hence, the sum would be ₹3000.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions