The difference between the compound interest and the simple interest for 2 years at 8% per annum on a certain sum of money is 120. Find the sum
Answers
GIVEN :-
- CI - SI = Rs. 120.
- Rate ( R ) = 8 %.
- Time ( n ) = 2 years.
TO FIND :-
- The Sum.
SOLUTION :-
Let the Principal be "x".
Now,
Now According to the question,
Hence the required sum is Rs. 18750.
Step-by-step explanation:
GIVEN :-
CI - SI = Rs. 120.
Rate ( R ) = 8 %.
Time ( n ) = 2 years.
TO FIND :-
The Sum.
SOLUTION :-
Let the Principal be "x".
\begin{gathered} \\ : \implies \displaystyle \sf \: SI = \dfrac{P \times R \times T}{1 00 } \\ \\ \\ \end{gathered}
:⟹SI=
100
P×R×T
\begin{gathered} : \implies \displaystyle \sf \: SI = \frac{x \times 8 \times 2}{100} \\ \\ \\ \end{gathered}
:⟹SI=
100
x×8×2
\begin{gathered} : \implies \underline{\boxed{\displaystyle \sf SI = \frac{16x}{100} }} \\ \\ \end{gathered}
:⟹
SI=
100
16x
Now,
\begin{gathered} \\ \\ : \implies \displaystyle \sf \: CI = P \Bigg[ \bigg(1 + \dfrac{R}{100}\bigg)^{n} -1\Bigg] \\ \\ \\ \end{gathered}
:⟹CI=P[(1+
100
R
)
n
−1]
\begin{gathered} : \implies \displaystyle \sf \: CI = x \Bigg[ \bigg(1 + \dfrac{8}{100}\bigg)^{2} -1\Bigg] \\ \\ \\ \end{gathered}
:⟹CI=x[(1+
100
8
)
2
−1]
\begin{gathered}: \implies \displaystyle \sf \: CI = x \Bigg[ \bigg( \dfrac{100 + 8}{100}\bigg)^{2} -1\Bigg] \\ \\ \\ \end{gathered}
:⟹CI=x[(
100
100+8
)
2
−1]
\begin{gathered}: \implies \displaystyle \sf \: CI = x \Bigg[ \bigg( \dfrac{108}{100}\bigg)^{2} -1\Bigg] \\ \\ \\ \end{gathered}
:⟹CI=x[(
100
108
)
2
−1]
\begin{gathered}: \implies \displaystyle \sf \: CI = x \Bigg[\dfrac{108 \times 108}{100 \times 100} -1\Bigg] \\ \\ \\ \end{gathered}
:⟹CI=x[
100×100
108×108
−1]
\begin{gathered}: \implies \displaystyle \sf \: CI = x \Bigg[\dfrac{11664}{10000} -1\Bigg] \\ \\ \\ \end{gathered}
:⟹CI=x[
10000
11664
−1]
\begin{gathered}: \implies \displaystyle \sf \: CI = x \Bigg[\dfrac{11664 - 10000}{10000}\Bigg] \\ \\ \\ \end{gathered}
:⟹CI=x[
10000
11664−10000
]
\begin{gathered}: \implies \displaystyle \sf \: CI = x \Bigg[\dfrac{1664 }{10000}\Bigg] \\ \\ \\ \end{gathered}
:⟹CI=x[
10000
1664
]
\begin{gathered}: \implies \displaystyle \sf \: CI = x \times \frac{1664}{10000} \\ \\ \\ \end{gathered}
:⟹CI=x×
10000
1664
\begin{gathered}: \implies \underline{ \boxed{ \displaystyle \sf \: CI = \frac{1664x}{10000} }} \\ \\ \end{gathered}
:⟹
CI=
10000
1664x
Now According to the question,
\begin{gathered} \\ \\ : \implies \displaystyle \sf \: CI - SI = 120 \\ \\ \\ \end{gathered}
:⟹CI−SI=120
\begin{gathered}: \implies \displaystyle \sf \: \frac{1664x}{10000} - \frac{16x}{100} = 120 \\ \\ \\ \end{gathered}
:⟹
10000
1664x
−
100
16x
=120
\begin{gathered}: \implies \displaystyle \sf \: \frac{1664x}{10000} - \frac{1600x}{10000} = 120 \\ \\ \\ \end{gathered}
:⟹
10000
1664x
−
10000
1600x
=120
\begin{gathered}: \implies \displaystyle \sf \: \frac{1664x - 1600x}{10000} = 120 \\ \\ \\ \end{gathered}
:⟹
10000
1664x−1600x
=120
\begin{gathered}: \implies \displaystyle \sf \: \frac{64x}{10000} = 120 \\ \\ \\ \end{gathered}
:⟹
10000
64x
=120
\begin{gathered}: \implies \displaystyle \sf \:64x = 120 \times 10000 \\ \\ \\ \end{gathered}
:⟹64x=120×10000
\begin{gathered}: \implies \displaystyle \sf \:64x = 1200000 \\ \\ \\ \end{gathered}
:⟹64x=1200000
\begin{gathered}: \implies \displaystyle \sf \:x = \frac{1200000}{64} \\ \\ \\ \end{gathered}
:⟹x=
64
1200000
\begin{gathered}: \implies \underline{ \boxed{ \displaystyle \sf \:x = 18750}} \\ \\ \end{gathered}
:⟹
x=18750
Hence the required sum is Rs. 18750.