Math, asked by swati1987lipi, 3 months ago

The difference between the compound interest and the simple interest on a certain sum of money 16% per annum compounded annually for 2 years is Rs 600. Find sum.
Plz answer Fast​

Answers

Answered by mathdude500
3

\large\underline\blue{\bold{Given \:  Question :-  }}

The difference between the compound interest and the simple interest on a certain sum of money 16% per annum compounded annually for 2 years is Rs 600. Find sum.

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

\begin{gathered}\begin{gathered}\boxed{\mathsf{ Simple\:Interest =\dfrac{Principal \times Rate \times Time}{100}}}\\\\\boxed{\mathsf{Compound\:Interest=P\bigg[ \bigg( 1+\dfrac{r}{100} \bigg)^n - 1 \bigg] }}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{To \:  Find :-  }}

  • Principal sum to be invested.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{rate \: of \: interest, \: r \:  = 16\% \: per \: annum} \\ &\sf{time, \: t = 2 \: years} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Let -  \begin{cases} &\sf{sum \: invested \: be \: Rs \: P}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{❥︎ Step :- 1}}

❥︎Calculation of Simple interest

❥︎ Principal = Rs P

❥︎ Time, t = 2 years

❥︎ Rate, r = 16% per annum

\bf \:  ⟼ Simple  \: interest , \: S_1 = \dfrac{P \times r \times t}{100}

\sf \:  ⟼S_1 = \dfrac{P \times 16 \times 2}{100}

\sf \:  ⟼S_1 = \dfrac{8P}{25} \sf \:  ⟼(1)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{❥︎ Step :- 2}}

❥︎Calculation of Compound interest

❥︎Principal = Rs P

❥︎Time, t = 2 years

❥︎Rate, r = 16% per annum

 {\mathsf{Compound\:Interest \: C_1=P\bigg[ \bigg( 1+\dfrac{r}{100} \bigg)^n - 1 \bigg] }}

{\mathsf{C_1=P\bigg[ \bigg( 1+\dfrac{16}{100} \bigg)^2 - 1 \bigg] }}

{\mathsf{C_1=P\bigg[ \bigg( 1+\dfrac{4}{25} \bigg)^2 - 1 \bigg] }}

{\mathsf{C_1=P\bigg[ \bigg( \dfrac{29}{25} \bigg)^2 - 1 \bigg] }}

{\mathsf{C_1=P\bigg[ \bigg( \dfrac{841}{625} \bigg) - 1 \bigg] }}

{\mathsf{C_1=P\bigg[ \bigg( \dfrac{841 - 625}{625} \bigg)  \bigg] }}

{\mathsf{C_1=P\bigg[ \bigg( \dfrac{216}{625} \bigg) \bigg] }}\bf \:  ⟼ (2)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{❥︎ Step :- 3}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{ \:According  \: to \:  statement :-  }}

\bf \:C_1 - S_1 = \: 600

\bf\implies \:\dfrac{216}{625} P - \dfrac{8}{25} P = 600

\bf\implies \:\dfrac{216P - 200P}{625}  = 600

\bf\implies \:\dfrac{16}{625} P = 600

\bf\implies \:P = 600 \times \dfrac{625}{16 }  = 23437.50

\large{\boxed{\boxed{\bf{So, sum \:  invested  \: is \:  Rs \:  23, 437 . 50.}}}}

Similar questions