Math, asked by PixieAngel, 3 months ago

The difference between the compound interest and the simple interest on a certain sum for 2 years at 6% p.a is ₹90. Find the sum.​

Answers

Answered by kapilb90
1
Answer- ₹ 25000
Explanation
Answered by Yuseong
12

Required Solution :

★ Sum = Rs 25000 ★

Given:

• The difference between the compound interest and the simple interest on a certain sum for 2 years at 6% p.a is ₹90.

To calculate:

• The sum i.e principal.

Calculation:

Here, we'll first calculate the simple interest and then compound interest as per the the given information. Then by forming the suitable equation , we'll find the sum.

→ Let the sum be "P".

Simple Interest:

 \bf { \longrightarrow S.I= \dfrac{P \times R \times T}{100} }

Where,

  • P = Principal
  • R = Rate = 6 % p.a
  • Time = 2 years

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \bf { \longrightarrow S.I= \dfrac{P \times 6 \times 2}{100} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \bf { \longrightarrow S.I= \dfrac{P \times 12}{100} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \bf { \longrightarrow S.I= \dfrac{P \times 6}{50} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \bf { \longrightarrow S.I= \dfrac{P \times 3}{25} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \bf \purple { \longrightarrow S.I= \dfrac{3P}{25} }

Also,

Compound Interest:

 \bf { \longrightarrow C.I = Amount - Principal}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \bf { \longrightarrow C.I = {P \Bigg ( 1 + \dfrac{R}{100} \Bigg )}^{n} - P}

Where,

  • P = Principal
  • R = Rate = 6 % p.a
  • n (number of years) = 2 years

\bf { \longrightarrow C.I = {P \Bigg ( 1 + \dfrac{6}{100} \Bigg )}^{2}- P }

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf { \longrightarrow C.I = {P \Bigg (  \dfrac{100 + 6}{100} \Bigg )}^{2}- P }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf { \longrightarrow C.I = {P \Bigg (  \dfrac{106}{100} \Bigg )}^{2}- P }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf { \longrightarrow C.I = P \Bigg (  \dfrac{106}{100} \times \dfrac{106}{100}   \Bigg )}  - P

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf { \longrightarrow C.I = P \Bigg (  \dfrac{53}{50} \times \dfrac{53}{50}   \Bigg ) - P}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf { \longrightarrow C.I = P \Bigg (  \dfrac{53 \times 53}{50 \times 50}   \Bigg ) - P}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf { \longrightarrow C.I = P  \times  \dfrac{2809}{2500} - P }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf { \longrightarrow C.I =\dfrac{2809P}{2500} -P }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf { \longrightarrow C.I =\dfrac{2809P - 2500P}{2500}  }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf\purple { \longrightarrow C.I =\dfrac{309P}{2500}  }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now, we got the value of S.I and C.I. Also, the question states that difference between C.I and S.I is ₹ 90. So,

 \bf { \longrightarrow C.I - S.I = Rs \: 90 }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \bf { \longrightarrow  \dfrac{309P}{2500}  - \dfrac{3P}{25}   = Rs \: 90 }

⠀⠀⠀⠀⠀⠀

 \bf { \longrightarrow  \dfrac{309P - 300P}{2500}   = Rs \: 90 }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \bf { \longrightarrow  \dfrac{9P}{2500}   = Rs \: 90 }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \bf { \longrightarrow  9P   = Rs \: 90 \times 2500 }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \bf { \longrightarrow  9P   = Rs  \: 22500 }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \bf { \longrightarrow  P   = Rs  \:  \dfrac{22500}{9} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \bf \orange{ \longrightarrow  P   = Rs  \:  25000 }

Hence, the sum is Rs 25000.

⠀⠀⠀⠀⠀

Similar questions