Math, asked by MathTeacher029, 23 days ago

The difference between the compound interest and the simple interest on a certain sum for 2 years at 5% per annum is $ 40. Find the sum​

Answers

Answered by krishnakalpanadash
23

Step-by-step explanation:

C.I=P(1+R/100)^n

=P(1+5/100)^2-P

=P(21/20)^2-P

=441P/400-P

=41P/400

S.I=PRT/100

=P×5×2/100

=P/10

C.I-S.I=40

41P/400-P/10=40

P/400=40

P=16000

Answered by Sugarstar6543
347

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}\end{gathered}

• The difference between the compound interest and the simple interest on a certain sum is $ 40

• Time = 2 years

• Interest rate = 5% per annum

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{To find  \:  :}}}}}}\end{gathered}

• The sum

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Using formula  \:  :}}}}}}\end{gathered}

\quad\dag{\underline{\boxed{\sf{Compound \:  interest =(P  {( 1 +  r)}^{T}   -P)  \:  }}}}†

we're

• P = principal

• r = rate of interest

• T = time

 \quad\dag{\underline{\boxed{\sf{Simple \:  interest = \dfrac{P× R × T}{100} \:  }}}}†

we're

• P = Principal

• R = rate of interest

• T = time

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Solution  \:  :}}}}}}\end{gathered}

\sf  ➼ \: According \:  to  \: the \:  question :-

⇒ ( Compound interest ) - ( simple interest ) = 40

∴ ⇒\sf \: (P  {( 1 +  r)}^{T}   -P)  - ( \dfrac{P× R × T}{100} ) = 40

⇒ \sf \: (P  {( 1 +  5\%)}^{2}   -P)  - ( \dfrac{P× 5 × 2}{100} ) = 40

⇒ \sf(P  {( 1 +   \dfrac{5}{100} )}^{2}   -P)  - ( \dfrac{P \times 10}{100} ) = 40

⇒ \sf(P  {( 1 +  0.05 )}^{2}   -P)  - ( \dfrac{10P}{100} ) = 40

⇒ \sf(P  {(1.05 )}^{2}   -P)  -  ( {\sf { {\dfrac{{\cancel{{10}} ^{1}}P}{{\cancel{{100}}^{10}}}}}})= 40

⇒ \sf \: (P  \times  1.1025  -P)  -  ( \dfrac{P}{10}) = 40

⇒ \sf \: (  1.1025P  -P)  -   (\dfrac{P}{10} )= 40

⇒ \sf \: (  0.1025P  )  -   (\dfrac{P}{10} )= 40

⇒ \sf \: ( \dfrac{1025P}{10000} ) - ( \dfrac{P}{10} ) = 40

⇒ \sf \: ( \dfrac{1025P - 1000P}{10000})  = 40

⇒ \sf \: ( \dfrac{25P}{10000})  = 40

⇒ \sf  \: 25P = 40000

⇒ \sf  \: P = \dfrac{40000}{25}

⇒ \sf  \: P ={\sf { {\dfrac{{\cancel{{40000}} ^{16000}}}{{\cancel{{25}}^{1}}}}}}

⇒ \sf  \dag{\underline{\boxed{\sf{\purple{P= 1600}}}}}†

As we know ,

➼ Principal = Sum of money

∴ Sum of money = 16,000

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Answer  \:  :}}}}}}\end{gathered}

• 16,000

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Know \: more :}}}}}}\end{gathered}

\longrightarrow\small{\underline{\boxed{\sf{\red{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Amount = Principle + Interest}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{ Principle=Amount - Interest }}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

 \longrightarrow\small{\underline{\boxed{\sf{\red{Time = \dfrac{Simple \: Interest \times 100}{Principle \times Rate}}}}}}

 \longrightarrow \red{\underline{\boxed{\sf{Compound \:  interest =(P  {( 1 +  r)}^{T}   -P)  \:  }}}}

\underline{\rule{230pt}{3pt}}

Similar questions