Math, asked by abhay223kumar223, 7 months ago

the difference between the compound interest compounded annually and simple interest on the certain sum at rate of 6% per annum for 2 years is 54 find the sum​

Answers

Answered by VishnuPriya2801
63

Answer:-

Given:

Time period (T) = 2 years

Rate of interest (R) = 6 %

Difference between CI and SI = 54

Let the sum be x.

We know that,

  \boxed{ \large{\sf \: CI = P\bigg( 1 + \frac{R}{100} \bigg) ^{T}  - P}}

And,

SI = PTR / 100

[ Where P is the sum or principle ]

According to the question,

 \implies \sf \: P \bigg( 1 + \frac{R}{100}  \bigg) ^{T}  - P -  \frac{PTR}{100}   = 54 \\  \\  \\ \implies \sf \:x \bigg( 1 + \frac{6}{100}  \bigg) ^{2}  - x -  \frac{(x)(2)(6)}{100}  = 54 \\  \\  \\ \implies \sf \:x \bigg( \frac{100 + 6}{100}  \bigg) ^{2}  - x -  \frac{12x}{100}  = 54 \\  \\  \\ \implies \sf \: \frac{x \times 106  \times 106}{100 \times 100}  - x -  \frac{3x}{25}  = 54 \\  \\  \\ \implies \sf \: \frac{2809x}{2500}  - x -  \frac{3x}{25}  = 54 \\  \\  \\ \implies \sf \: \frac{2809x - 2500x - 300x}{2500}  = 54 \\  \\  \\ \implies \sf \:9x = 54 \times 2500 \\  \\  \\ \implies \sf \:x =  \frac{54 \times 2500}{9}  \\  \\  \\ \implies \boxed{ \sf \:x = 15000}

The sum is Rs. 15000.

Answered by Anonymous
307

Step-by-step explanation:

Given :

  • Difference between the Compound Interest and Simple Interest = Rs. 54

  • At rate = 6% p.a

  • Time = 2 years

To find :

  • The sum of money

Solution :

Simple Interest -

  • Rate = 6%
  • Time = 2 years
  • Principal = P

\bigstar \: \boxed{\tt{SI = \frac{Principal \times Rate \times Time}{100}}} \: </p><p>

Substitute all values :

\tt{\implies} \:SI = \dfrac{P \times 6 \times 2}{100} \\ \\    \\  \: \tt{\implies} \:SI = \frac{12p}{100}

Compound Interest -

\bigstar \: {\boxed{\tt{CI= P\left( 1 + \frac{R}{100}\right)^{N}} -P }} \:

Substitute all Values :

\begin{lgathered}\tt{\longrightarrow} \: {CI= P\left( 1 + \dfrac{6}{100}\right)^{2}} -1 \\ \\ \tt{\longrightarrow} \: {CI=P\left(\dfrac{106}{100}\right)^{2}} -1\\ \\ \tt{\longrightarrow} \: {CI=P\left(\dfrac{53}{50}\right)^{2}} -1 \\ \\ \tt{\longrightarrow} \: {CI=P \times \frac{2809}{2500} -1} \\ \\ \tt{\longrightarrow} \: {CI= \frac{309P}{100}}\end{lgathered}  \:

Difference between the CI and SI

 \sf \: Compound  \: Interest = \tt{\frac{309P}{100}}  \\

 \sf \: Simple \:  Interest = \tt{\frac{12P}{100}}

\begin{lgathered}\tt{\longrightarrow} \: \dfrac{309P}{2500} - \dfrac{12P}{100} = 54 \\ \\ \tt{\longrightarrow} \: \dfrac{309P - 300P}{2500} = 54 \\ \\ \tt{\longrightarrow} \: \dfrac{9P}{2500} = 54 \\ \\ \tt{\longrightarrow} \: 9P = 54 \times 2500 \\ \\ \tt{\longrightarrow} \: 9P = 135000 \\ \\ \tt{\longrightarrow} \: P = \dfrac{135000}{9} \\ \\ \tt{\longrightarrow} \: P = 15000\end{lgathered}  \:

Principal = Rs. 15,000

∴ The sum of money is Rs. 15,000.

Similar questions