Math, asked by pandiselvam, 11 months ago

The difference between the
length and breadth of a rect-
angle is 23m. It is perimeter is
206m, then its area is :(m²)​

Answers

Answered by DarkRealms
2

Answer:

Length = X

Breadth = X-23

P = 206 m

P = 2(X) + 2(X-23)

206 = 2X +2X - 46

206 = 4X - 46

4X = 206 +46

4X = 252

X = 63 (length)

breadth = 63 - 23 = 40

Area = 40 × 63

       = 2520 m²

plz mark as brainliest

Answered by Anonymous
0

\huge\bf\red{ɢɪᴠᴇɴ :}

ᴛʜᴇ ʙᴀꜱᴇ ᴏꜰ ᴛʜᴇ ᴘᴀʀᴀʟʟᴇʟᴏɢʀᴀᴍ ɪꜱ ᴛʜʀɪᴄᴇ ɪᴛꜱ ʜᴇɪɢʜᴛ.

ᴀʀᴇᴀ ᴏꜰ ᴘᴀʀᴀʟʟᴇʟᴏɢʀᴀᴍ = 867 ᴄᴍ²

\huge\bf\red{Tᴏ Fɪɴᴅ :}

ᴛʜᴇ ʜᴇɪɢʜᴛ.

ᴛʜᴇ ʙᴀꜱᴇ.

\huge\bf\red{Sᴏʟᴜᴛɪᴏɴ : }

ʜᴇɴᴄᴇ,ɪᴛ ɪꜱ ɢɪᴠᴇɴ ᴛʜᴀᴛ ᴛʜᴇ ʙᴀꜱᴇ ᴏꜰ ᴛʜᴇ ᴘᴀʀᴀʟʟᴇʟᴏɢʀᴀᴍ ɪꜱ ᴛʜʀɪᴄᴇ ɪᴛꜱ ʜᴇɪɢʜᴛ.

ʟᴇᴛ'ꜱ ꜰɪʀꜱᴛ ᴄᴏɴꜱɪᴅᴇʀ ᴛʜᴇ ʜᴇɪɢʜᴛ ᴏꜰ ᴛʜᴇ ᴘᴀʀᴀʟʟᴇʟᴏɢʀᴀᴍ ʙᴇ x ᴛʜᴇɴ ᴛʜᴇ ʙᴀꜱᴇ ᴡɪʟʟ ʙᴇ 3×x = 3x

Now,

{\underline{\boxed{\sf{\blue{Area_{(parallelogram)}=base\times{height}}}}}}

\dashrightarrow\sf{867=3x\times{x}}

\dashrightarrow\sf{867=3x^2}

\dashrightarrow\dfrac{\cancel{867}^{289}}{\cancel{3}^1}\sf{=x^2}

\dashrightarrow\sf{289=x^2}

\dashrightarrow\sf{x=\sqrt{289}}

\dashrightarrow\sf{x=\sqrt{17\times{17}}}

\bigstar\underline{\boxed{\sf{\pink{x=17}}}}

{\text{\sf{Therefore,the Height (x) is 17cm}}}

{\text{\sf{And the Base (3x)}}}\sf{= 3\times{17}=51 cm.}

Similar questions