Math, asked by Maths01, 1 year ago

The difference between the Outer and inner surface areas of a hollow cylinder, 14 cm Long is 88 sq. cm. Find out the outer and inner radii of the cylinder, given that volume of metal used is 176 cm3

Answers

Answered by anonymous64
11
\sf{\boxed{\bold{\tiny{Heya \: mate.\: Solution\: below}}}}
=========================================

<b><u><font color ="red">Answer - ↓↓↓</font color></u></b>




♠ Given Height (h) = 14 cm

Let the outer radius be R and inner radius be r.


Then, Outer Curved surface area (C.S.A) = 2πRh

Inner C.S.A = 2πrh

Outer Volume = πR²h

Inner Volume = πr²h



♠ Now, its given that difference between outer C.S.A and inner C.S.A is 88 cm².


\sf{=⟩ 2 \pi R h - 2 \pi r h = 88}

\sf{=⟩ 2 \pi h (R - r) = 88}

\sf{=⟩ 2 \times \frac {22}{7} \times 14 (R - r) = 88}

\sf{=⟩ R - r = 88 \times \frac{1}{14} \times \frac{1}{2} \times \frac{7}{22}}

\sf{=⟩ R - r = 1}....eq i



♠ Also, Volume of metal used to make the cylinder is 176 cm³


\sf{=⟩ \pi {R}^{2} h - \pi {r}^{2} h = 176}

\sf{=⟩ \pi h ({R}^{2} - {r}^{2}) = 176}

\sf{=⟩ \frac{22}{7} \times 14 \times ({R}^{2} - {r}^{2}) = 176}

\sf{=⟩ ({R}^{2} - {r}^{2}) = 176 \times \frac{1}{14} \times \frac{7}{22}}

\sf{=⟩ ({R}^{2} - {r}^{2}) = 4 }... eq ii

\sf{=⟩ (R + r)(R - r) = 4}




♠ Then, from eq i and ii,

\sf{(R + r)(R - r) = 4}

\sf{=⟩ (R + r) (1) = 4}

\sf{=⟩ R + r = 4 \times 1}

\sf{=⟩ R + r = 4}... eq iii




♠ Adding eq i and iii,


\sf{(R - r) + (R + r) = 4 + 1}

\sf{=⟩ R - r + R + r = 5}

\sf{=⟩ 2R = 5}

\sf{=⟩ R = 5 \times \frac{1}{2}}

\sf{=⟩ R = \frac{5}{2}}




♠ Now, substituting the value of R in eq iii,


\sf{\frac{5}{2} + r = 4}

\sf{=⟩ r = 4 - \frac{5}{2}}

\sf{=⟩ r = \frac{3}{2}}




♥♥♥ •°• The outer radius is 5/2 cm and inner radius is 3/2 cm. ♥♥♥
=========================================

Thank you... (^_-)

Ronyboy: Bro I am not sure about the answer
anonymous64: wєll, ítѕ up tσ чσu, чσu вєlíєvє σr nσt
Similar questions