Math, asked by abkmadhesh, 7 months ago

The difference between the outer and inner surfaces of a right circular metallic pipe. 14 cm long is 176 cm^2. if the pipe is made of 396 cm^2 metal the sum of outer and inner radii(in cm)

Answers

Answered by ROUSHANYADAV
16

Answer:

Let, R be the external radius and r be the inner radius of the metallic pipe. h=14cm

Outer surface area−inner surface area=44cm2

∴2πRh−2πrh=44cm2

∴R−r=2×722×1444=2×22×1444×7

∴R−r=21.

The volume of metal used =99cm3

∴ External volume − internal volume =99cm3

∴πR2h−πr2h=99cm3

∴πh(R2−r2)=99cm3

∴722×14(R+r)(R−r)=99cm3 [∵a2−b2=(a+b)(a−b)] and [∵R−r=1/2]

22×2(R+r)21=99cm3

∴R+r=2299=29

R+r=29

2R=52R=210R−r=21

R=25=2.5cm

∴ External radius =2.5cm

R+r=29

r+2.5=4.5

r=4.5−2.5=2cm

Hence Internal radius =2cm

I hope it is helpful for you..

please koi ameer hai jo is gareeb ko dj alok de sakta hai. please bhai my I'd in my status...

Answered by shreddermanvir246
14

Answer:

Ans : 4.5

Step-by-step explanation:

Surface area of right circular metallic pipe = 2 * π * r * h

Therefore,

                2πRh-2πrh = 176

                R-r = ( 176* π ) / (2 * 14)

                R - r = 2

                Volume of pipe = π*square(r)*h

                πR2h-πr2h = 396

                R2-r2 = 9

                (R+r)(R-r) = 9

                R+r = 9/2

                Solving above two equations :

                R = 13 / 4

                r = 5 / 4

                R + r = 4.5

Similar questions