Math, asked by Sweta3677, 1 year ago

The difference between the outer and the inner curved surface areas of hollow right circular cylinder 14 cm long , is 88 cm^ . If the volume of the metal used in making the cylinder is 176 cm3 . Find the inner and outer diameter of the cylinder

Answers

Answered by mathsdude85
8

\sf{\boxed{\bold{\tiny{Heya \: mate.\: Solution\: below}}}}

=========================================

<b><u><font color ="red">Answer - ↓↓↓</font color></u></b>

♠ Given Height (h) = 14 cm

Let the outer radius be R and inner radius be r.

Then, Outer Curved surface area (C.S.A) = 2πRh

Inner C.S.A = 2πrh

Outer Volume = πR²h

Inner Volume = πr²h

♠ Now, its given that difference between outer C.S.A and inner C.S.A is 88 cm².

\sf{=⟩ 2 \pi R h - 2 \pi r h = 88}

\sf{=⟩ 2 \pi h (R - r) = 88}

\sf{=⟩ 2 \times \frac {22}{7} \times 14 (R - r) = 88}

\sf{=⟩ R - r = 88 \times \frac{1}{14} \times \frac{1}{2} \times \frac{7}{22}}

\sf{=⟩ R - r = 1}....eq i

♠ Also, Volume of metal used to make the cylinder is 176 cm³

\sf{=⟩ \pi {R}^{2} h - \pi {r}^{2} h = 176}

\sf{=⟩ \pi h ({R}^{2} - {r}^{2}) = 176}

\sf{=⟩ \frac{22}{7} \times 14 \times ({R}^{2} - {r}^{2}) = 176}

\sf{=⟩ ({R}^{2} - {r}^{2}) = 176 \times \frac{1}{14} \times \frac{7}{22}}

\sf{=⟩ ({R}^{2} - {r}^{2}) = 4 }... eq ii

\sf{=⟩ (R + r)(R - r) = 4}

♠ Then, from eq i and ii,

\sf{(R + r)(R - r) = 4}

\sf{=⟩ (R + r) (1) = 4}

\sf{=⟩ R + r = 4 \times 1}

\sf{=⟩ R + r = 4}... eq iii

♠ Adding eq i and iii,

\sf{(R - r) + (R + r) = 4 + 1}

\sf{=⟩ R - r + R + r = 5}

\sf{=⟩ 2R = 5}

\sf{=⟩ R = 5 \times \frac{1}{2}}

\sf{=⟩ R = \frac{5}{2}}

♠ Now, substituting the value of R in eq iii,

\sf{\frac{5}{2} + r = 4}

\sf{=⟩ r = 4 - \frac{5}{2}}

\sf{=⟩ r = \frac{3}{2}}

♥♥♥ •°• The outer radius is 5/2 cm and inner radius is 3/2 cm. ♥♥♥

=========================================

Thank you... (^_-)

Answered by XxRedmanherexX
6

Answer:

Mark me as brainliest bro

Attachments:
Similar questions