Math, asked by mayuri8612, 11 months ago

the difference between the roots of the equation X square - 13 x + K =0 is 7 find k​

Answers

Answered by Anonymous
5

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \huge\mathcal{\bf{\underline{\underline{\huge\mathcal{Answer}}}}}

\large\mathcal\red{solution}

 \\if \: a \: and \: b \: are \: the \: zeroes \: of \: the \: quadratic \: equation\\ \: then \: the \: equation \: can \: be \: written \: as \:   \\ x {}^{2} - (a + b)x + ab  = 0 \\ here \: the \: given \: equation \: is \:  \\ x {}^{2}  - 13k + k = 0 \: \\  so \: the \: sum \: o \: th e\:  \: equation \: is \:  = 13 \: and \\  \: product \: of \: the \: roots \: or \: zeros \: is \:  = k \\ therefore \: the \: difference \: of \:the \: zeros \: is \:  \\  = \sqrt{(13) {}^{2}   - 4k}    \\ according \: to \: the \: question \:  \\ \sqrt{(13) {}^{2}   - 4k}   = 7 \\  =  > 13 {}^{2}  - 4k = 7 {}^{2} \\  =  >  4k = 13 {}^{2}  - 7 {}^{2}  \\  =  > 4k = (13 + 7)(13 - 7) \\  =  > k =  \frac{20 \times 6}{4}  \\  =  > k = 30

\large\mathcal\red{hope\: this \: helps \:you......}

Similar questions