Math, asked by shivv22, 9 months ago

The difference between the sides at right angles in a right angled triangle us 14cm. The area if the triangle 120cm^2.Calculate the perimeter of the Triangle.​

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
6

Answer:-

Perimeter of the triangle = \bf{60 \: cm}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Given:-

Difference between the sides at right angles in a right angled triangle = \bf{14 \: cm}

Area of the triangle = \bf{120 \: cm^2}

Solution:-

Let the sides containing the right angle be \bf{"x" cm} and \bf{(x-14)cm}.

Then it's Area will be::

\boxed {{\frac{1}{2}}.x.(x-14)cm^2}

But, Area = \bf{120cm^2}

\therefore {\frac{1}{2}}x(x-14) = 120

\implies{x^2-14x - 240 = 0}

\implies{x^2-24x+10x-240=0}

\implies{x(x-24)+10(x-24)=0}

\implies{(x-24)(x+10)=0}

\implies{\bf{x=24}} \: \: \: \: \: [Neglecting \: \bf{x = -10}]

Therefore,

one side = \bf{24 \: cm}

other side = (24-14)cm =\bf{10 \: cm}

\\ Hypotenuse = \sqrt{(24)^{2}+(10)^{2}}cm

\longrightarrow{\sqrt{576 + 100 cm}}

\longrightarrow{\sqrt{576}cm}

\implies \bf{26 \: cm}

\thereforePerimeter of the triangle =

(24+10+26)cm

\implies \bf{60 \: cm}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by Anonymous
0

Answer:

the \: answer \: is \: 60cm

Similar questions