Math, asked by rashmiaditya86, 11 months ago

the difference between the sides of a right angle triangle is 4 cm if area of the triangle is 70 cm^2. find the perimeter​

Answers

Answered by ihrishi
1

Step-by-step explanation:

Let one side of the right triangle be x cm

Hence, other side =(x - 4) cm

 \fbox {x - (x - 4) = x - x + 4 = 4} \:  \\ area \: of \: right \triangle \:  =  \frac{1}{2}  \times x \times (x - 4)  \\  \implies 70 = \frac{1}{2}  ( {x}^{2}  - 4x) \\ \implies 140 =  {x}^{2}  - 4x \:  \\ \implies  {x}^{2}  - 4x  - 14 = 0 \\ \implies  {x}^{2}  - 14x   + 10x  - 140 \: = 0\\ \implies  x({x}  - 14)   + 10(x  - 14) \: = 0 \\ \implies (x + 10) (x - 14) = 0 \\ \implies (x + 10) = 0 \: or \: (x - 14) = 0  \\  \implies \: x =  - 10 \: or \: x = 14 \\ but \: x \: can \: not \: be \:  - ve \\ hence \: x \neq - 10 \\ therefore \: x = 14 \\  \implies \: x - 4 = 10 \\  {hyp}^{2}  =  {14}^{2}  +  {10}^{2}  = 196 + 100  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: = 296 \\ hyp \:  =  \sqrt{296}  =  \sqrt{4 \times 74}  = 2 \sqrt{74}  \\ perimeter \: of \: right \triangle \:  = 10 + 14 + 2 \sqrt{74}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =( 24 + 2 \sqrt{74} )cm

Similar questions