Math, asked by rajeevacountsbdr, 1 year ago

The difference between the sides of right angle in right angle triangle is 14 cm. The area of the triangle is 120 cmsq. Find the perimeter of the triangle

Answers

Answered by KartikSharma13
2
Suppose one side of a right angle triangle is x
then another side is x+14 
Area of a triangle is 120 
1/2 * Altitude * Base =120 
1/2 * x * x+14 = 120 
x^2+ 14x = 120*2 
x^2+ 14x = 240 
x^2+ 14x-240 =0 
x^2+16x-15x-240=0 
x(x+16)-15 (x+16)=0 
(x-15) (x+16) =0 
x-15=0 OR x-16=0 
x=15 OR x=16 

rajeevacountsbdr: This is the wrong answer
Answered by Anonymous
59

Given,

  • A right-angled triangle = 14cm
  • Area of triangle = 120cm²

To find,

  • Perimeter of the triangle

\:\:\:\:\:\:─────────────────────

Let the sides containing the right angle \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:be X cm and (X - 14) cm.

\:

Then, its area,

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \bigg[ \bf\dfrac{1}{2} \sf × x×(x-14)\bigg] \sf cm².

\:\:

\sf \:\:But, area = 120cm²\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:[given]

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \therefore\: \bf\dfrac{1}{2} \sf x(x-14)=120

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \hookrightarrow \sf \:x²-14x-240=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \hookrightarrow \sf \:x²-24x+10x-240=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \hookrightarrow \sf \:x(x-24)+10(x-24)=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow \sf \:(x-24)(x+10)=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{x=\frak{\pink{24}}}}}

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{x=\frak{\purple{-10\:\:[neglecting]}}}}}

\:\:

\:

{\bold { \underline{\normalsize{Now, }}}}

\:

  • \sf One \:side=24cm,
  • \sf Other\:side= (24-14)cm=10cm.

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\normalsize\mathtt {Hypotenuse=} \displaystyle \sqrt{(24)²+(10)²}

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:= \displaystyle \sqrt{576+100} \: =\: \displaystyle \sqrt{676}

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Large\mathtt {=26\:cm}

\:\:

 \therefore \sf perimeter\:of\: triangle=(24+10+26)cm

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \underline{\boxed{\sf{=\frak{\red{60\:cm.}}}}}

Similar questions