Math, asked by Hemant1011, 11 months ago

The difference between the two parallel sides of a trapezium is 8 cm.perpendicular distance between them is 38 cm.lf the area of the trapezium is 950 cm,find the lengths of the parallel sides

Answers

Answered by mehekshaha
6

Answer:

29 cm and 21 cm

Step-by-step explanation:

Given - area of trapezium is 950, height ( perpendicular distance) is 38 cm

Area = 1/2*(a+b) * h. ( a and b are the

parallel sides ,

and h is height)

So, 950 =1/2 * ( a+ b) * 38

950 = ( a+ b) * 19

950/19 = ( a + b)

50 = ( a+b)

In the question, it also states that a - b = 8

So the lengths of the parallel sides can be 29 cm and 21 cm as 29 + 21 = 50 cm and 29 - 21 = 8 cm

Therefore the answer is 29 cm and 21 cm

Answered by Anonymous
20

Given :

  • The difference between the parallel sides of the trapezium is 8 cm.
  • The perpendicular distance (height) between is 38 cm.
  • Area of the trapezium is 950 cm²

To Find :

  • Length of parallel sides of the trapezium.

Solution :

Let the first parallel side be x cm.

Let the other parallel side be y cm.

Case 1 :

The difference between the first parallel, x and the second parallel side, y is 8 cm.

Equation :

\sf{\longrightarrow{x-y=8}}

\sf{\longrightarrow{x=8+y\:\:\:(1)}}

Case 2 :

The area of the trapezium is 950 cm².

Height of the trapezium = 38 cm.

Formula :

\large{\boxed{\bold{Area_{Trapezium}\:=\:\dfrac{1}{2}\:\times\:(sum\:of\:parallel\:sides)\:\times\:height}}}

Equation :

\sf{\longrightarrow{950\:=\:\dfrac{1}{2}\:\times\:(x+y)\:\times\:38}}

\sf{\longrightarrow{950\:=\:\dfrac{1}{2}\:\times\:(38x+38y)}}

\sf{\longrightarrow{950\:\times\:2=\:38x+38y}}

\sf{\longrightarrow{1900=38x+38y}}

\sf{\longrightarrow{1900=38(x+y)}}

\sf{\longrightarrow{\dfrac{1900}{38}=x+y}}

\sf{\longrightarrow{50=x+y}}

\sf{\longrightarrow{50=8+y+y}}

\bold{\big[From\:equation\:(1)\:x\:=\:8+y\:\big]}

\sf{\longrightarrow{50-8=y+y}}

\sf{\longrightarrow{42=2y}}

\sf{\longrightarrow{\dfrac{42}{2}=y}}

\sf{\longrightarrow{21=y}}

Substitute, y = 21 in equation (1),

\sf{\longrightarrow{x=8+y}}

\sf{\longrightarrow{x=8+21}}

\sf{\longrightarrow{x=29}}

\large{\boxed{\bold{\red{First\:parallel \:side\:=\:x\:=\:29\:cm}}}}

\large{\boxed{\bold{\red{Second\:parallel \:side\:=\:y\:=\:21\:cm}}}}

Similar questions