Math, asked by vikasroy3627, 1 year ago

The difference between two numbers is 26. Bigger number is three times the smaller number find the smaller product

Answers

Answered by NancyAmlani
2

Step-by-step explanation:

  • let bigger number be x.
  • let smaller number be y.
  • given difference between two numbers is 26.
  • so x - y = 26

x = y +26 .....equation 1

  • also given bigger number is three times the smaller number.
  • so x = 3y...... equation 2
  • keeping equation 1 in equation 2
  • 26+y = 3y
  • 26=3y -y
  • 26=2y
  • 26/2=y
  • 13=y
  • hence smaller number is 13
  • to find bigger number
  • x - y =26
  • x-13=26
  • x=26+13
  • x=39
  • hence bigger number is 39.

hope this helps you .

Answered by Anonymous
4

\bf{\underline{\underline \blue{Solution:-}}}

\sf\underline{\red{\:\:\: Correct \: Question:-\:\:\:}}

  • The difference between two numbers is 26 and one number is three times the other. Find them.

\sf\underline{\red{\:\:\: AnswEr:-\:\:\:}}

  • The requireds numbers = 39 and 13

\sf\underline{\red{\:\:\: Given:-\:\:\:}}

  • The difference between the two numbers is 26.
  • One number is three times the other.

\sf\underline{\red{\:\:\: Need\:To\: Find:-\:\:\:}}

  • The required numbers = ?

\bf{\underline{\underline \blue{Solution:-}}}

Let larger number be x.

And smaller number be y.

\sf\underline{\pink{\:\:\: Now,\:it\: is \: given\:that:-\:\:\:}}

  • The difference between two numbers is 26

\longrightarrow \sf {x - y = 26............... (1) } \\\\

\sf\underline{\pink{\:\:\: Also,\:one\: number\:is\:three \:times \:other:-\:\:\:}}

\longrightarrow \sf {x = 3y............... (2) } \\\\

\sf\underline{\pink{\:\:\: Now,\:our\: equations \:are:-\:\:\:}}

\longrightarrow \sf {x - y = 26............... (1) }

\longrightarrow \sf {x = 3y............... (2) } \\\\

\sf\underline{\green{\:\:\: Putting\:(2)\: in \:(1):-\:\:\:}}

\dashrightarrow \sf {x - y = 26} \\\\

\dashrightarrow \sf {(3y) - y = 26} \\\\

\dashrightarrow \sf {2y = 26} \\\\

\dashrightarrow \sf {y = \dfrac{\cancel{26}}{\cancel{2}} } \\\\

\dashrightarrow \sf {y = 13} \\\\

\sf\underline{\green{\:\:\: Putting\: y = 13 \:in \:(2):-\:\:\:}}

\dashrightarrow \sf {x = 3y} \\\\

\dashrightarrow \sf {x = 3 \times 13 } \\\\

\dashrightarrow \sf {x = 39} \\\\

\sf\underline{\orange{\:\:\: ThereFore:-\:\:\:}}

x = 39 and y = 13 is the solution for the above equation.

\sf\underline{\orange{\:\:\: So:-\:\:\:}}

\dashrightarrow \sf {Larger \: Number = x}

\dashrightarrow \sf {Larger \: Number = 39}

\sf\underline{\pink{\:\:\: And:-\:\:\:}}

\dashrightarrow \sf {Smaller \: Number = y}

\dashrightarrow \sf {Smaller \: Number = 13}

\sf\underline{\pink{\:\:\: Hence:-\:\:\:}}

  • The requireds numbers are 39 and 13.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions