Math, asked by koushik7637, 10 months ago

The difference between two numbers is 7. Six times the smaller plus the larger is is 77. Find the numbers.​

Answers

Answered by conjureroman
1

Answer:

So, the larger no. will be 17 and smaller no. be 10

Step-by-step explanation:

Let the larger no. be X and smaller be Y.

According to question,

X-Y=7

X=7+Y. (eq.1)

6Y+X=77. (eq.2)

Substituting X=7+Y in eq.2

we get,

6Y+7+Y=77

7Y=70

Y=10

Substituting Y=10 in eq.1

we get,

X=10+7

X=17

Answered by Anonymous
1

\huge\underline\mathrm{SOLUTION:-}

AnswEr:

\large{\underline{\boxed{\mathfrak\blue{Two \: numbers = 10 \: \& \: 17 }}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Let the larger number be a & smaller number be b.

1st case:

⇒ a - b = 7

⇒ a = b + 7 .................(eq.1)

2nd case:

⇒ 6b + a = 77

Putting value of a from (eq.1):

\sf {\: \: \: \: \:\: [\because a = b + 7]}

⇒ 6b + b + 7 = 77

⇒ 7b + 7 = 77

⇒ 7b = 77 - 7

⇒ 7b = 70

⇒ b = 70/7

⇒ b = 10

\therefore{\underline{\boxed{\rm{Smaller \: number = 10}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Putting value of b in (eq.1):

⇒ a = 10 + 7

⇒ a = 17

\therefore{\underline{\boxed{\rm{Larger \: number = 17}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions