Math, asked by linearequation, 1 year ago

the difference between two numbers is 7. six times the smaller plus the larger is 77 .find the numbers.

Answers

Answered by Anonymous
8
Hi there !

Let the larger no: be x and the smaller no: be y

x - y = 7            ----> [1 ]

x + 6y = 77       ----> [2]


(2) - (1)  subtracting ,

x + 6y = 77  
x - y = 7    
===========
7y = 70

y = 10

x - y = 7

x - 10 = 7

x = 17

The no:s are 17 and 10


Answered by Anonymous
0

\huge\underline\mathrm{SOLUTION:-}

AnswEr:

  • \large{\underline{\boxed{\mathfrak\blue{Two \: numbers = 10 \: \& \: 17 }}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Let the larger number be a & smaller number be b.

1st case:

⇒ a - b = 7

⇒ a = b + 7 .................(eq.1)

2nd case:

⇒ 6b + a = 77

Putting value of a from (eq.1):

\sf {\: \: \: \: \:\: [\because a = b + 7]}

⇒ 6b + b + 7 = 77

⇒ 7b + 7 = 77

⇒ 7b = 77 - 7

⇒ 7b = 70

⇒ b = 70/7

⇒ b = 10

\therefore{\underline{\boxed{\rm{Smaller \: number = 10}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Putting value of b in (eq.1):

⇒ a = 10 + 7

⇒ a = 17

\therefore{\underline{\boxed{\rm{Larger \: number = 17}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions