Math, asked by hemant75, 1 year ago

the difference between two numbers is 7 six times the smaller plus the larger 77 find the numbers

Answers

Answered by gaurav2013c
2
Let the numbers be a and b

First condition,

a-b = 7 -------(1)

Second condition,

6b +a = 77 ------(2)

On subtracting equation 1 from 2, we get

7b = 70

=> b = 10


a = 17


Required numbers are 10 and 17
Answered by Anonymous
8

\huge\underline\mathrm{SOLUTION:-}

AnswEr:

\large{\underline{\boxed{\mathfrak\blue{Two \: numbers = 10 \: \& \: 17 }}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Let the larger number be a & smaller number be b.

1st case:

⇒ a - b = 7

⇒ a = b + 7 .................(eq.1)

2nd case:

⇒ 6b + a = 77

Putting value of a from (eq.1):

\sf {\: \: \: \: \:\: [\because a = b + 7]}

⇒ 6b + b + 7 = 77

⇒ 7b + 7 = 77

⇒ 7b = 77 - 7

⇒ 7b = 70

⇒ b = 70/7

⇒ b = 10

\therefore{\underline{\boxed{\rm{Smaller \: number = 10}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Putting value of b in (eq.1):

⇒ a = 10 + 7

⇒ a = 17

\therefore{\underline{\boxed{\rm{Larger \: number = 17}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions