Math, asked by knreddygamingyt, 1 month ago

The difference between two roots of equation 4x* - 4x - 25x + x + 6 = 0 is unity, then the
difference between other two roots is
1) 2
2) 3
3) 4
4) 5​

Answers

Answered by vanshit5170
6

Answer:

4

Step-by-step explanation:

very simple ,

plz mark brainliest

Answered by divyanjali714
1

Concept:

Examine the highest-degree term of the polynomial – that is, the term with the highest exponent. That exponent is how many roots the polynomial will have.

The roots of a polynomial are also called its zeroes, because the roots are the ​x​ values at which the function equals zero.

a^{2}- b^{2}=(a+b)(a-b)

Given:

A polynomial 4x^{4}-4x^{3}-25x^{2}+x+6 and the diffeence betwwen 2 of it roots is given as 1.

To find:

We need to find the difference of the other two roots.

Solution:

Now lets assume the roots are a, b, c and d.

Lets solve the quadratic equation and find its roots.

x-3 )   4x^{4}-4x^{3}-25x^{2}+x+6   (  4x^{3} +8x^{2} -x-2

         4x^{4}-12x^{3}

      - ___________________             [subtracting]

                   8x^{3}-25x^{2} +x+6

                   8x^{3}-24x^{2}

     -  ___________________             [subtracting]

                             -x^{2} +x+6

                             -x^{2} +3x

     - ___________________             [subtracting]

                                      -2x+6

                                      -2x+6

                                - ______              [subtracting]

                                              0        

Therefore, the poynomial can be written as (4x^{3} +8x^{2} -x-2)(x-3)

Long division for 4x^{3} +8x^{2} -x-2

x + 2  )  4x^{3} +8x^{2} -x-2  (  4x^{2} -1

            4x^{3} +8x^{2}

         - ______________               [subtracting]

                             - x - 2

                             - x - 2

        - ______________                [subtracting]            

                                    0

Therefore, the poynomial can be written as (x-3)(4x^{2}-1)(x+2)

Now,

4x^{2}-1=(2x)^{2}  - 1^{2}

Therefore, the roots to 4x^{2} -1 are (2x-1)(2x+1)

The equation can be written as (x-3)(x+2)(2x-1)(2x+1)

The roots are 3, -2, -\frac{1}{2} ,\frac{1}{2}

Now on comparison we can say that

\frac{1}{2} -(-\frac{1}{2})=1

Hence the other 2 roots are 3, -2

The difference of theses roots are,

3 - (-2)=3+2=5

Therefore the difference of the other two roots is 5.

Correct option is (4)

Similar questions