Math, asked by tuhuynh0794, 7 months ago

the difference from 2 square number is 19 find the two square number

Answers

Answered by keshav2150
6

Answer: 181.

Given: a, b natural numbers (positive integers)

Assumed: a not = b; a > b

Given: a^2 - b^2 = 19

a^2 = 19 + b^2

c^2 = 19

Perfect squares (squares of positive integers):

4 9 16 25 36 49 64 81 100

Differences (looking for 19):

differences 2^2 = 4: 0 5 12 21 …

differences 3^2 = 9: 5 0 7 16 27 …

differences 4^2 = 16: 12 7 0 9 20 …

differences 5^2 = 25: 21 16 9 0 11 24 …

differences 6^2 = 36: 32 27 20 11 0 13 28 …

differences 7^2 = 49: 45 40 33 24 13 0 15 32 …

differences 8^2 = 64: 60 55 48 39 28 15 0 17 36 …

differences 9^2 = 81: 77 72 65 56 45 32 17 0 19

a = 10, b = 9

10^2 - 9^2 = 100 - 81 = 19.

10^2 + 9^2 = 100 + 81 = 181.

Right triangle

a^2 = c^2 + b^2

Right triangle a = 10, b = 9, c = 4.3589

Right triangle: a = hypotenuse; b = opposite side from Angle B; c = adjacent side from Angle B (SQR(19)) = 4.3589.

Angle A = 90;

Angle B = arccos(SQR(19)/a).

Angle B = arccos(4.3589/10) = 64.16 degrees

Angle B = arctan(9/4.3589) = 64.16 degrees

Note-googled it

Source-google

| ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄l

|   thanks if you l

I  liked my answer l

I Or marked it l

I Brainliest l            

|_________l

(\__/) ||  ll (\__/)

(•ㅅ•) ||  ll (•ㅅ•)

/   づ  ⊂ \

Similar questions