The difference of square of two natural numbers 88 if the larger number is 5 less than twice the smaller number then find the numbers
Answers
Answered by
2
Let the numbers be x (smaller) and y (larger).
According to the problem,
y² - x² = 88 ... (i)
y = 2x - 5 ... (ii)
Substituting the value of y from the equation (ii) in equation (i), we get,
(2x - 5)² - x² = 88
⇒ 4x² - 20x + 25 - x² - 88 = 0
⇒ 3x² - 20x - 63 = 0
⇒ 3x² - 27x + 7x - 63 = 0
⇒ 3x (x - 9) + 7 (x - 9) = 0
⇒ (3x + 7) (x - 9) = 0
∴ Either x = 9 or x = - 7/3
But x cannot be negative.
So, x = 9
And, y = 2x - 5 = 2 × 9 - 5 = 18 - 5 = 13
According to the problem,
y² - x² = 88 ... (i)
y = 2x - 5 ... (ii)
Substituting the value of y from the equation (ii) in equation (i), we get,
(2x - 5)² - x² = 88
⇒ 4x² - 20x + 25 - x² - 88 = 0
⇒ 3x² - 20x - 63 = 0
⇒ 3x² - 27x + 7x - 63 = 0
⇒ 3x (x - 9) + 7 (x - 9) = 0
⇒ (3x + 7) (x - 9) = 0
∴ Either x = 9 or x = - 7/3
But x cannot be negative.
So, x = 9
And, y = 2x - 5 = 2 × 9 - 5 = 18 - 5 = 13
Answered by
2
łєт тнє sмαłłєя ησ: вє x
тнєη тнє łαяgєя ησ: ıs 2x - 5
gıѵєη ,
(2x - 5)² - x² = 88
4x² -20x + 25 - x² = 88
3x² - 20x - 63 = 0
3x² - 27x + 7x - 63
3x(x - 9) + 7(x - 9)
(3x + 7) (x - 9)
x = -7/3 . x = 9
тнє ѵαłυє cαηησт вє ηєgαтıѵє , нєηcє , x = 9 ıs тнє cσяяєcт ѵαłυє.
===========================
2x - 5 = 18 - 5 = 13
----------------------------------
тнє ησ:s αяє 9 αη∂ 13
тнєη тнє łαяgєя ησ: ıs 2x - 5
gıѵєη ,
(2x - 5)² - x² = 88
4x² -20x + 25 - x² = 88
3x² - 20x - 63 = 0
3x² - 27x + 7x - 63
3x(x - 9) + 7(x - 9)
(3x + 7) (x - 9)
x = -7/3 . x = 9
тнє ѵαłυє cαηησт вє ηєgαтıѵє , нєηcє , x = 9 ıs тнє cσяяєcт ѵαłυє.
===========================
2x - 5 = 18 - 5 = 13
----------------------------------
тнє ησ:s αяє 9 αη∂ 13
Similar questions