Math, asked by piyushmohi5, 9 months ago

The difference of square of two number is 180 the square of the smaller is 8 times the larger number find the two numbers

Answers

Answered by silentlover45
13

\large\underline\mathrm\red{Given:-}

  • \large\mathrm{The \: difference \: of \: square \: of \: the \: number \: is \: 180.}

  • \large\mathrm{Square \: of \: smaller \: number \: is \: 8 \: times \: the \: larger \: number}

\large\underline\mathrm\red{To \: find}

  • \large\mathrm{The \: larger \: number}

\large\underline\mathrm\red{Solution}

  • \large\mathrm{Let \: the \: larger \: number \: be \: x}

  • \large\mathrm{Let \: the \: smaller \: number \: be \: y}

\large\underline\mathrm\red{A/Q}

\large\mathrm{The \: square \: of \: the \: smaller \: number \: is \: 8 \: time \: the \: larger \: number}

\large\mathrm{⟹ {y}^{2} = 8x}_______(1)

\large\mathrm{The \: difference \: of \: square \: of \: two \: number \: is \: 180°}

\large\mathrm{⟹ {x}^{2} - {y}^{2} = {180}}______(2)

\large\mathrm{Substitution \: value \: of \: {y}^{2} = 8x \: from \: (1) \: and \: (2).}

\large\mathrm{⟹ {x}^{2} - 8x = 180.}

\large\mathrm{So, \: degree \: of \: the \: Eq. \: is 2 \: so \ it's \: a \: Quadratic \: Equation.}

\large\underline\mathrm\red{Now},

\large\mathrm{Solving \: the \: quadratic \: equation \: by \: factorisation \: method.}

\large\mathrm{⟹ {x}^{2} - 8 - 180 = 0}

\large\mathrm{⟹ {x}^{2} + 18x - 10x - 180 }

\large\mathrm{⟹ x(x - 18) + 10(x - 18)}

\large\mathrm{⟹ (x + 10) \: (x - 18)}

\large\mathrm{⟹ x = - 10 \: Or \: x = 18}

\large\mathrm{When \: x = - 10 \: then \: value \: of \: is:-}

\large\mathrm{⟹ {y}^{2} = 8x}

\large\mathrm{⟹ {y}^{2} = 8 × (-10)}

\large\mathrm{⟹ {y}^{2} = - 18}

\large\mathrm{⟹ y = +,- \: (root \: -80)}

\large\mathrm{So \: we \: can't \: the \: negative \: number \: in \: root \: so \: the \: value \: of \: y = \: root \: -80. \: is \: not \: possible.}

\large\mathrm{Now,  \:when \: x = 18 \: then \: value \: of \: y \: :-}

\large\mathrm{⟹ {y}^{2} = 8x}

\large\mathrm{⟹ {y}^{2} = 8 × 18}

\large\mathrm{⟹ {y}^{2} = 144}

\large\mathrm{⟹ y = \: (root \: 144)}

\large\mathrm{⟹ y = +,- 12}

\large\underline\mathrm\red{Now},

\large\mathrm\red{The \: two \: number \: are:-}

\large\mathrm{≫ Smaller \: number \: = \: 12 \: Or \: - 12}

\large\mathrm{≫ Large \: number \: = \: 18}

__________________________________

Answered by Prempundir389
12

Answer:

this is your ans

I hope it helps

Attachments:
Similar questions