Math, asked by dilawarsarjekhan, 2 months ago

the difference of the ages of son and father is 28 years the difference of square of their ages is 1848.Find the ages of son and father
.
.
.
.
.
.
.
plz help me..​

Answers

Answered by Sauron
41

Answer:

Father is 47 years old and Son is 19 years old.

Step-by-step explanation:

Let the ages of father and son be x and y respectively.

According to the first condition,

Difference between the ages of father and son = 28

⇒ x - y = 28

⇒ x = 28 + y ------- (Eq. 1)

__________________

Second condition:

Difference of square of their ages is 1848.

⇒ (x)² - (y)² = 1848

⇒ (28 + y)² - y² = 1848 (Substitute Eq.1)

⇒ [(28)² + y² + 2(28)(y)] - y² = 1848 ∵ [(a + b)² = a² + b² + 2ab]

⇒ 784 + y² + 56y - y² = 1848

⇒ 56y + 784 = 1848

⇒ 56y = 1848 - 764

⇒ 56y = 1064

⇒ y = 1064/56

⇒ y = 19

Son's age = 19 years.

___________________

Father's age :

⇒ x = 28 + y

⇒ x = 28 + 19

⇒ x = 47

Father's age = 47 years

Therefore, Father is 47 years old and Son is 19 years old.

Answered by BrainlyRish
23

❍ Let's Consider the age of father and son be a yrs & b yrs , respectively.

⠀⠀⠀⠀ CASE I : The difference of the ages of son and father is 28 years .

\qquad :\implies \sf  Age \:of \:Father \: - \: Age \:of \: Son \: = 28 \: \\

\qquad :\implies \sf  a \: - \: b \: = 28 \: \\

\qquad :\implies \bf  a \: = \: 28  + b \:\qquad \qquad \bigg\lgroup \sf{  Equation  \: 1 \:\:}\bigg\rgroup\\

⠀⠀⠀⠀CASE II : The difference of square of their ages is 1848 .

\qquad :\implies \sf ( Age \:of \:Father)^2 \: - \: (Age \:of \: Son)^2 \: = 28 \: \\

\qquad :\implies \sf ( a)^2 \: - \: (b)^2 \: = 28 \: \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Eq.1 \:\: \::}}\\

\qquad :\implies \sf ( a)^2 \: - \: (b)^2 \: = 28 \: \\

\qquad :\implies \sf ( 28 + b )^2 \: - \: (b)^2 \: = 28 \: \\

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ Algebraic \:Indentity \:\:\:: (a + b)^2 = a^2 + b^2 + 2ab  }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Applying \: this \: Algebraic \: Indentity \::}}\\

\qquad :\implies \sf ( 28 + b )^2 \: - \: (b)^2 \: = 1848 \: \\

\qquad :\implies \sf 28^2 + b^2 + 2 \times 28 \times b  \: - \: (b)^2 \: = 1848 \: \\

\qquad :\implies \sf 28^2 \cancel{+ b^2} + 2 \times 28 \times b  \: \cancel{- \: (b)^2} \: = 1848\: \\

\qquad :\implies \sf 28^2  + 2 \times 28 \times b  \:  \: = 1848 \: \\

\qquad :\implies \sf 784  + 2 \times 28 \times b  \:  \: = 1848 \: \\

\qquad :\implies \sf 784  + 56b  \:  \: = 1848 \: \\

\qquad :\implies \sf  56b  \:  \: = 1848 - 784\: \\

\qquad :\implies \sf  56b  \:  \: = 1064\: \\

\qquad :\implies \sf  b  \:  \: = \cancel{\dfrac{1064}{56}}\: \\

\qquad :\implies \frak{\underline{\purple{\:b= 19 \:yrs }} }\bigstar \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \:value \:of \:b \:in \:Eq.1 \: \:\: \::}}\\

\qquad :\implies \bf  a \: = \: 28  + b \:\qquad \qquad \bigg\lgroup \sf{  Equation  \: 1 \:\:}\bigg\rgroup\\

\qquad :\implies \sf  a \: = \: 28  + 19 \:\\

\qquad :\implies \frak{\underline{\purple{\:a = 47 \:yrs  }} }\bigstar \\

Therefore,

  • Son's age is : b = 19 yrs
  • Father's age is : a = 47 yrs

⠀⠀⠀⠀⠀\therefore {\underline{ \sf \:Hence,\:The \:age \:of\:Son \:and \:Father  \:are\:\bf 19 \:yrs \: \& \: 47 \:yrs \: \sf , respectively . \:}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions