The difference of the parallel sides of a trapezoidal field is 20 m. Its area is 450 m' and its altitude is 15 m. Find the length of the parallel sides
Answers
Let ABCD be a trapezium with parallel sides AB and CD
Let ABCD be a trapezium with parallel sides AB and CDLet AB=20 (Given) and CD=x
Given) and CD=xA(ABCD)=480 m
Given) and CD=xA(ABCD)=480 m 2
Given) and CD=xA(ABCD)=480 m 2 ,height(h)=15 m (Given)
Given) and CD=xA(ABCD)=480 m 2 ,height(h)=15 m (Given)We know that, A(ABCD)=
Given) and CD=xA(ABCD)=480 m 2 ,height(h)=15 m (Given)We know that, A(ABCD)= 2
Given) and CD=xA(ABCD)=480 m 2 ,height(h)=15 m (Given)We know that, A(ABCD)= 2(AB+CCD
×h
×h⟹480=
×h⟹480= 2
×h⟹480= 220+x
×h⟹480= 220+x
×h⟹480= 220+x ×15
×h⟹480= 220+x ×15⟹
×h⟹480= 220+x ×15⟹ 15
×h⟹480= 220+x ×15⟹ 152×480
×h⟹480= 220+x ×15⟹ 152×480
×h⟹480= 220+x ×15⟹ 152×480 =20+x
×h⟹480= 220+x ×15⟹ 152×480 =20+x⟹64=20+x
×h⟹480= 220+x ×15⟹ 152×480 =20+x⟹64=20+x⟹x=44
×h⟹480= 220+x ×15⟹ 152×480 =20+x⟹64=20+x⟹x=44Hence, length of other parallel side CD is 44 m.
Answer:
Let one side be L1 and another side L2. It is given
L1-L2=20.
L1=20+L2. equation 1
lt is given
(1/2)(L1+L2)×h=450
(L1+L2)×15=450×2
L1+L2=450×2/15=60
Put the value of L1 in this equation, you will get
20+L2+L2=60
2L2=40
L2=40/2=20
L1=20+20=40