The difference of the present age of two brothers is 4 years. 5 years ago if the product of their ages was 96 , find their present ages.
Answers
Answer
Present age of one (first) brother is 17 years and of another (second) brother is 13 years
Explanation
The difference of the present ages of two brothers is 4 years.
Let the present age of one brother be x years and of another brother be y years.
Difference in ages of one brother and another brother is 4 years.
....(eq 1)
Five years ago, the product of their ages was 96 years.
Five years ago, (means five years back) will be (x - 5) years and (y - 5) years. [5 will be decreased from both of their ages.]
i.e.
- Age of one brother = (x - 5) years
- Age of another brother = (y - 5) years
According to question,
The above equation is in the form ax² + bx + c = 0.
So, apply quadratic formula on it.
Here, a = 1, b = -6 and c = - 91
•°• Present age of another brother is 13 years.
As, age can't be negative. So, negative one is neglected.
Now, substitute value of x = 13 in equation (1)
•°• Present age of one (first) brother is 17 years.
- Difference of Present age of two brother = 4 years .
- 5 years ago , their Product of ages was = 96 .
- Find their Present age ?
_____________________
→ 5 years before younger brother was = (x-5) years old.
→ 5 years before elder brother was = (x+4-5) = (x-1) years old.
As, given 5 years ago their product of ages was 96.
so,
As now, Age cant be in negative ,,,
so,
___________________________
Factorization of Quadratic polynomials of the form x² + bx + c by splitting Middle term :-------
(i) In order to factorize x² + bx + c we have to find numbers p and q such that p + q = b and pq = c.
(ii) After finding p and q, we split the middle term in the quadratic as px + qx and get desired factors by grouping the terms.