the difference of two natural number is 4 and the difference of their reciprocal is 1 upon 8 find the number
Answers
As the diffence of two natural number is 4, let the number be x and x + 4, where x ∈ N.
We note that x + 4 > x ⇒ < ⇒
According to given, - =
⇒ = ⇒ =
⇒ x (x + 4) = 32 ⇒ x² + 4x - 32 = 0
⇒ (x - 4) (x + 8) = 0 ⇒ x - 4 = 0 or x + 8 = 0
⇒x = 4 or x = -8 but x ∈ N
⇒ x = 4
When x = 4, x + 4 = 4 + 4= 8
Hence, the required numbers are 8,4.
Hope it helps! :)
Step-by-step explanation:
As the diffence of two natural number is 4, let the number be x and x + 4, where x ∈ N.
We note that x + 4 > x ⇒ \sf\frac{1}{x + 4}
x+4
1
< \sf\frac{1}{x}
x
1
⇒
According to given, \sf\frac{1}{x}
x
1
- \sf\frac{1}{x+4}
x+4
1
= \sf\frac{1}{8}
8
1
⇒ \sf \frac{(x+4 )-x}{x(x+4)}
x(x+4)
(x+4)−x
= \sf \frac{1}{8}
8
1
⇒ \sf\frac{4}{x(x+4)}
x(x+4)
4
= \sf\frac{1}{8}
8
1
⇒ x (x + 4) = 32 ⇒ x² + 4x - 32 = 0
⇒ (x - 4) (x + 8) = 0 ⇒ x - 4 = 0 or x + 8 = 0
⇒x = 4 or x = -8 but x ∈ N
⇒ x = 4
When x = 4, x + 4 = 4 + 4= 8
Hence, the required numbers are 8,4.