Math, asked by erylljoshgo, 5 months ago

The difference of two numbers is 26. If the first number is 4 less than twice the second number, find the two numbers.

Answers

Answered by TRISHNADEVI
0

SOLUTION :

 \\  \\

Given :-

 \\

  • The difference of two numbers is 26.

  • The first number is 4 less than twice the second number.

 \\

To Find :-

 \\

  • The numbers = ?

\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Method 1 :-

 \\

Suppose,

 \\

  • The first number is x

  • The second number is y

 \\

According to first condition,

 \bigstar \:  \:  \sf{ \large{ \: x -  y = 26 \:  \:  -  -  -  -  -  -  > (1)}}

 \\

According to second condition,

 \bigstar \:  \:  \sf{ \large{ \: x  = 2y - 4 \:  \:  -  -  -  -  -  -  > (2)}}

 \\

From eq. (2), putting the value of eq. (1) :-

 \\

 \bigstar \:  \:  \sf{ \large{ \: x -  y = 26 }} \\  \\  \sf{ \large{: \implies \: (2y - 4) - y = 26}} \\  \\  \sf{ \large{: \implies \: 2y - 4 - y = 26 }} \:  \:  \:  \\  \\  \sf{ \large{: \implies \:  y - 4 = 26}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf{ \large{: \implies \:  y = 26  +  4}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf{ \large{ \therefore \:  \:   \underline{ \: y  = 30 \: }}} \:  \:  \:  \:  \:  \:  \:

 \\

Putting the value of y in eq. (2) :-

 \\

 \bigstar \:  \:  \sf{ \large{ \: x  = 2y - 4 }} \\  \\  \sf{ \large{: \implies \:  x =( 2 \times  \underline{30})- 4}} \\  \\   \sf{ \large{: \implies \:  x = 60 - 4}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf{ \large{ \therefore \:  \:  \underline{ \: x = 56 \: }}} \:  \:  \:  \:  \:

 \\

  • Hence, the numbers are 56 and 30.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Method 2 :-

 \\

Suppose,

  • The first number is x

 \\

According to first condition,

  • Second number will be = x - 26

 \\

According to second condition,

 \bigstar \:  \:  \sf{ \large{ \: x  = 2(x - 26) - 4 }}

 \\

Solving the above equation :-

 \\

 \bigstar \:  \:  \sf{ \large{ \: x  = 2(x - 26) - 4 }} \\  \\  \:  \:  \:  \sf{ \large{: \implies \: x = (2x - 52) - 4}} \\  \\  \sf{ \large{: \implies \: x = 2x - 52 - 4}} \\  \\ \:  \:  \:   \sf{ \large{: \implies \: x - 2x =  - 52 - 4}} \\  \\ \sf{ \large{: \implies \: - x =  - 56 }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \sf{ \large{ \therefore \:  \:  \underline{ \: x = 56 \: }}} \:  \:  \:

 \\

 \sf{ \large{ \therefore \:  \: The  \:  \: second \:  \:  number = x - 26}}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \large{ = 56 - 26}} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \large{  = 30}}

 \\

  • Hence, the numbers are 56 and 30.

\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

ANSWER :

 \\  \\

If the difference of two numbers is 26 and the first number is 4 less than twice the second number, then the two numbers will be 56 and 30.

Similar questions