Math, asked by munavwarmuhammed, 3 months ago

The differences between the compound
interest and the simple interest for 3 years
at 5% p.a. on a certain sum of money was
Rs.610. Find the sum.​

Answers

Answered by VishnuPriya2801
43

Answer:-

Let the sum be P.

Given:

Time period (T) = 3 years.

Rate of interest (R) = 5%

Difference between CI and SI = Rs. 610.

We know that;

 \sf \: Simple \: Interest \: (SI) =  \frac{PTR}{100}  \\  \\  \sf \: Compound \: Interest (CI) = P \bigg(1 +  \frac{R}{100}  \bigg) ^{T}  - P

Hence;

 \implies \sf \: P \bigg(1 +  \frac{5}{100}  \bigg) ^{3}   - P -  \frac{P \times 3 \times 5}{100}  = 610 \\  \\  \\ \implies \sf \:P \bigg( \frac{100 + 5}{100}  \bigg) ^{3}  -  \frac{100P}{100}  -  \frac{15P}{100}  = 610 \\  \\  \\ \implies \sf \: P \bigg( \frac{105 \times 105 \times 105}{1000000}  \bigg) -  \frac{100P }{100}  -  \frac{15P}{100} = 610  \\  \\  \\ \implies \sf \: \frac{1157625P}{1000000}  -   \frac{100P}{100}   -  \frac{15P}{100}   = 610\\  \\  \\ \implies \sf \: \frac{1157625P -1000000P - 150000P}{1000000}  = 610 \\  \\  \\ \implies \sf \:7625P = 610 \times 1000000 \\  \\  \\ \implies \sf \:P =  \frac{610 \times 1000000}{7625}  \\  \\  \\ \implies  \boxed{\sf \:P = Rs. \:80000}

The sum is Rs. 80,000.

Answered by Anonymous
17

Given :-

Rate = 5 %

Time = 3 years

Difference = 610

To Find :-

Sum

Solution :-

For Simple interest

\sf SI = \dfrac{PRT}{100}

\sf \dfrac{P\times 5\times 3}{100}

\sf \dfrac{15P}{100}

\sf 0.15P

For CI

\sf CI = P\bigg(1+\dfrac{r}{100}\bigg)^n - P

\sf P\bigg(1+ \dfrac{5}{100}\bigg)^3 - P

\sf P\bigg(\dfrac{100+5}{100}\bigg)^3 - P

\sf P\bigg(\dfrac{105}{100}\bigg)^3 - P

\sf P(1.05)^3-P

\sf 1.157625P - P = 0.157625P

\sf 610 = 0.157625P - 0.15P

\sf 610= 0.007625P

\sf \dfrac{610}{0.007625} = P

\sf 80,000 = P

Similar questions