Math, asked by kumarabhishek38392, 8 months ago

The differentiable coefficient of x6 w.r.t x³ is:​

Answers

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\mathsf{x^6}

\underline{\textsf{To find:}}

\textsf{Differential coefficient of}\;\mathsf{x^6}

\textsf{with respect to}\;\mathsf{x^3}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{\dfrac{d(x^6)}{d(x^3)}}

\mathsf{=\dfrac{\dfrac{d(x^6)}{dx}}{\dfrac{d(x^3)}{dx}}}

\mathsf{=\dfrac{6\,x^5}{3\,x^2}}

\mathsf{=\dfrac{2\,x^5}{x^2}}

\mathsf{=2\,x^3}

\underline{\textsf{Answer:}}

\mathsf{\dfrac{d(x^6)}{d(x^3)}=2\,x^3}

Answered by pulakmath007
10

SOLUTION :

TO DETERMINE

 \sf{}The \:  differentiable \:  coefficient \:  of \:  {x}^{6}  \: w.r.t \:  \:  {x}^{3}

EVALUATION

Let

 \sf{}y =  {x}^{6}  \:  \:  \:  \: ....(1)

 \sf{}z =  {x}^{3}  \:  \:  \:  \: ....(2)

Differentiating both sides of Equation (1)with respect x we get

 \displaystyle \sf{} \frac{dy}{dx}  = 6 {x}^{5}

Differentiating both sides of Equation (2) with respect to x we get

 \displaystyle \sf{} \frac{dz}{dx}  = 3 {x}^{2}

 \therefore \sf{}The \:  differentiable \:  coefficient \:  of \:  {x}^{6}  \: w.r.t \:  \:  {x}^{3}

 \displaystyle \sf{} \frac{dy}{dz}  =  \frac{ \frac{dy}{dx} }{ \frac{dz}{dx} }

 \displaystyle \sf{}  = \frac{6 {x}^{5} }{3 {x}^{2} }

 \displaystyle \sf{} = 2 {x}^{3}

FINAL RESULT

 \sf{}The \:  differentiable \:  coefficient \:  of \:  {x}^{6}  \: w.r.t \:  \:  {x}^{3}  \: is \: 2 {x}^{3}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Let f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3

The derivative of √[[f(x)]^2+ [g (x)]^2]

W. r. to. x. is

https://brainly.in/question/18312318

Similar questions