The differential equation whose general solution is y= Ac^-x^2
Answers
Answered by
1
Answer:
17%
Solution:
Ax2+By2=1 can be written as
By2=1−Ax2
Differentiating w.r.t. ′x′, we get
2Bydydx=−2Ax
⇒dydx=−ABxy⇒−AB=yxdydx
Again differentiating w.r.t. ′x′, we get
d2ydx2=(−AB)(y−xdydxy2)
=(−AB)(y−x(−AB.xy)y2)
d2ydx2=(yx.dydx)y−x(yx.dydx.xy)y2
=yx.dydx(y−xdydxy2)
⇒y2d2ydx2=y2xdydx−y(dydx)2
⇒yd2ydx2+(dydx)2−yxdydx=0
⇒xyd2ydx2+x(dydx)2−ydydx=0
has 2nd order and first degree.
Step-by-step explanation:
I HOPE IT HELP YOU
Similar questions