Math, asked by Mahesh1871, 1 year ago

The differential equation whose solution is y= acos(x+2)

Answers

Answered by Sharad001
81

Question :-

Find the differential equation whose solution is y= acos(x+2) .

Answer :-

\rightarrow \: \red{ \boxed{ \sf{ \frac{ {d}^{2} y}{d \:  {x}^{2} }   \:  + y = 0}} }\:  \:

_____________________________

To Find :-

Find differential equation.

Step - by - step explanation :-

Given solution is ,

 \implies \: \sf{ y \:  = a \cos \big((x + 2) \big) } \\  \\  \sf{differentiate \: on \: both \: sides \:  \: with \: } \\  \sf{respect \: to \: x \: } \\  \\  \rightarrow \sf{ \frac{dy}{dx}  =  - a \sin \big((x + 2) \big)  \frac{d}{dx} (x + 2)} \\  \\  \rightarrow \: \sf{  \frac{dy}{dx}  =  - a \:  \sin \big((x + 2) \big) } \\  \\  \sf{ to \: remove \:  \red{a} \: again \: differentiate} \\  \sf{ with \: respect \: to \: x} \\  \\  \rightarrow \sf{ \frac{ {d}^{2} y}{d \:  {x}^{2} }  =  - a \cos \big((x + 2) \big)  \frac{d}{dx} (x + 2)} \\  \\  \because \: \bf{ y \:  = a \:  \cos \big((x + 2) \big)  }\\  \\  \therefore \\  \rightarrow \: \sf{ \frac{ {d}^{2} y}{d \:  {x}^{2} }   \:  =  - (y)} \\  \\  \rightarrow \: \boxed{ \sf{ \frac{ {d}^{2} y}{d \:  {x}^{2} }   \:  + y = 0}}

This is the required differential equation.

_____________________________

Similar questions