Math, asked by aravind27062001, 9 months ago

the differetial equation dy/dx=(x^2-y^2)/2xy is

Answers

Answered by rajdheerajcreddy
0

Answer:

x^{3}=\frac{c}{1-3t^{2} }

Step-by-step explanation:

Given ,   \frac{dy}{dx}=\frac{x^{2}-y^{2}  }{2xy} \\

              \frac{dy}{dx}=\frac{1- [\frac{y}{x}]^{2}  }{2[\frac{y}{x}] }

            Let y/x=t , then dy/dx= t +x(dt/dx)

substituting,   t+x\frac{dt}{dx} =\frac{1-t^{2} }{2t}

After solving,    \frac{dt}{dx} =\frac{1-3t^{2} }{2xt}

                        \int\frac{2t}{1-3t^{2} }dt =\int\frac{dx}{x}

                         \frac{ln(1-3t^{2}) }{-3}=ln(x) +c   (c is integral constant)

                      ln(x) +\frac{ln(1-3t^{2}) }{3}+c =0

                     ln[(x^{3})*(1-3t^{2})]=c

                      x^{3}=\frac{c}{1-3t^{2} }

Similar questions