Math, asked by sharmapk0081, 5 months ago

The digit at the tens place of a two digit number is three times the digit at the units place. Il
reversed, the new number will be 36 less than the original number. Find the number​

Answers

Answered by nishaag513
2

Answer:

jkdmdkjsskskskkdkks

Answered by amankumaraman11
1

Let the digit at unit place be m

And, the digit at tens place be n

Then,

  • The number is 10n+m

Here,

→ n = 3m

n - 3m = 0 -----(i)

On reversing the digits,

  • The new number is 10m+n

Given that,

  • New number = Old number - 36

i.e.

 \to \rm{}10m + n = 10n + m - 36 \\ \to  \rm{}10m - m + n - 10n =  - 36 \\ \to  \rm{ \:  \: }9m - 9n =  - 36 \\ \to  \rm \:  \:  \: 9(m - n) =  - 36 \\  \\ \to  \rm \:  \:  \: (m - n) =  \frac{ - 36}{9}  \\  \\ \to  \rm \:  \:  \: ( m- n) =   - 4 \:    \:  \:  \:  \:  \:  \:  \:  \:  \cdots(ii)

Now,

Adding equation (i) and equation (ii), we get,

 \to \sf{}\cancel{n} - 3m + m - \cancel{n} = 0 + ( - 4) \\ \to \sf{}  \:  \:  \:  \:  \:  \:  \:  \:  \: \cancel- 2m = \cancel  - 4 \\  \\ \to \sf{}   \:  \:  \:  \:  \:  \:  \: \frac{2m}{2}  =  \frac{4}{2}  \\  \\ \to \boxed{  \sf\:  \:  \:  \:  \:  \: \:  \:  \:  \:  m = 2 \:  \:  \: }

Thus,

 \leadsto \rm{}n = 3m \:  \:  \:  \:  \:  \:  \:  \:  \{using \:  \:  {eq}^{n}  \:  \:  \:  \: (i) \} \\\leadsto  \rm{}n = 3(2) \\\leadsto \boxed{   \:  \:  \:  \: \rm{} n= 6 \:  \:  \: }

Hence,

  • Original number (10n+m) = 62
Similar questions