Math, asked by Anonymous, 10 months ago

The digit in the ten's place of a two digit number is one less than the digit in the one's place. If we add this number to the number obtained by reversing its digits, the result is 55, find the number.

Answers

Answered by Anonymous
4

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ number \ is \ 23.}

\sf\orange{Given:}

\sf{\implies{The \ digit \ in \ the \ ten's \ place \ of}}

\sf{a \ two \ digit \ number \ is \ one \ less \ than \ the}

\sf{digit \ in \ the \ one's \ place }

\sf{\implies{The \ sum \ of \ number \ and \ the}}

\sf{number \ obtained \ by \ reversing \ the \ digits}

\sf{is \ 55.}

\sf\pink{To \ find:}

\sf{The \ numbers.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ digit \ in \ the \ ten's \ place \ be \ x}

\sf{and \ the \ digit \ in \ the \ unit's \ place \ be \ y.}

\sf{According \ to \ the \ first \ condition}

\sf{y-x=1}

\sf{\therefore{-x+y=1...(1)}}

\sf{Original \ number=10x+y}

\sf{Number \ with \ reversed \ digits=10y+x}

\sf{According \ to \ the \ second \ condition.}

\sf{(10x+y)+(10y+x)=55}

\sf{11x+11y=55}

\sf{11(x+y)=55}

\sf{x+y=\frac{55}{11}}

\sf{\therefore{x+y=5...(2)}}

\sf{Add \ equations \ (1) \ and \ (2)}

\sf{-x+y=1}

\sf{+}

\sf{x+y=5}

_______________________

\sf{2y=6}

\sf{\therefore{y=\frac{6}{2}}}

\boxed{\sf{\therefore{y=3}}}

\sf{Substitute \ y=3 \ in \ equation \ 1}

\sf{x+3=5}

\sf{x=5-3}

\boxed{\sf{\therefore{x=2}}}

\sf{Original \ number=10(2)+3=23}

\sf\purple{\tt{\therefore{The \ number \ is \ 23.}}}

Answered by TheSentinel
41

\color{darkblue}\underline{\underline{\sf  Question:}} \\

\rm{The \ digit \ in \ the \ ten's \ place \ of \ a}

\rm{two \ digit \ number \ is \ one \ less \ than \ the }

\rm{digit \ in \ the \ one's \ place, \ If \ we \ add \ this }

\rm{number \ to \ obtained \ by \ reversing \ it's \ digit,}

\rm{the \ result \ is \ 55 , \ find \ the \ number.}

_________________________________________

\color{green}\underline{\underline{\sf Answer:}} \\

\rm\orange{The \ number \ is \ 23.}

_________________________________________

\sf\underline\red{Given:} \\

\rm{The \ digit \ in \ the \ ten's \ place \ of}

\rm{a \ two \ digit \ number \ is \ one \ less \ than \ the}

\rm{digit \ in \ the \ one's \ place }

\rm{The \ sum \ of \ number \ and \ the}

\rm{number \ obtained \ by \ reversing \ the \ digits}

\rm{is \ 55.}

_________________________________________

\sf\underline\red{To \ Find:} \\

\rm{The \ numbers.}

_________________________________________

\color{green}\underline{\underline{\sf Solution:}} \\

\rm{Let \ the \ digit \ in \ the \ ten's \ place \ be \ m} \\

\rm{and \ the \ digit \ in \ the \ unit's \ place \ be \ n.} \\

\rm{According \ to \ the \ first \ condition}

\bf{n-m=1}

\bf{\implies{- \ m \ + \ n \ = \ 1 \ ............[a]}} \\

\rm{Original \ number \ = \ 10 \ m \ + \ n} \\

\rm{Number \ with \ reversed \ digits \ = \ 10 \ n \ + \ m} \\

\rm{According \ to \ the \ second \ condition.}

\rm{( \ 10m \ + \ n \ ) \ + \ ( \ 10n \ + \ m \ ) \ = \ 55} \\

\rm{11m \ + \ 11y \ = \ 55}

\rm{11(m+n) \ = \ 55}

\rm{m \ + \ n \ = \ \frac{55}{11}}

\rm{\implies{m \ + \ n \ = \ 5 \ ..............[b]}}

\sf{Add \ equations \ [a] \ and \ [b]} \\

\rm{2n=6} \\

\rm{\implies{m=\frac{6}{2}}}

\star\pink{\boxed{\bf{\implies{m \ = \ 3}}}}

\rm{putting \ this  \ value \ in \ equation \ [a]}

\rm{m+3=5}

\rm{m=5-3}

\star\pink{\boxed{\bf{\implies{m \ = \ 2}}}} \\

\rm{Original \ number=10(2)+3=23}

\bf\orange{\sf{\implies{The \ number \ is \ 23.}}}

_________________________________________

\rm\pink{Hope \ it \ helps \ :))}

Similar questions