Math, asked by d7dkgfo, 1 year ago

the digit in the tens place of a 2- digit number is twice the unit digit if the digits are reversed the new number is 18 less than the original number find the original number

Answers

Answered by ShanAgrawal
18
Hope it helps you.....
Attachments:

d7dkgfo: sala
d7dkgfo: salayehfbic
ShanAgrawal: kya hua?
d7dkgfo: answer nahi aathatho
d7dkgfo: sala
d7dkgfo: bata kayo
d7dkgfo: thh
Answered by Dɪʏᴀ4Rᴀᴋʜɪ
8

Given :

\sf\purple{Digit \:in\: tens\: place\: is\: twice \:the \:unit's \:digit.}

\sf\purple{If \:digits \:reversed, new \:number\: is\: 18\: less\: than\: }\sf\purple{the\: original \:number.}

To find :

\sf\orange{Original \:number}

Solution :

Let the digit at unit place be y and digit at ten's place be 2y [∵ Digit at tens place = twice the digit at units place]

\sf\green{∴ Original \:number = y + 10(2y) = y + 20y}\sf\green{ = 21y}

Now if digits are reversed, then :

\sf\red{∴ \:New\: number = 2y + 10y = 12y}

Now atq,

\sf\pink{⇒ 12y = 21y - 18}

\sf\pink{⇒ 12y - 21y = - 18}

\sf\pink{⇒ -9y = -18}

\sf\pink{⇒ y ={\frac{ -18}{-9}}}

\sf\pink{⇒ y = 2}

\sf\blue{∴ Digit\: at \:units \:place \:= y = 2}

\sf\blue{∴ Digit \:at\: tens \:place \:= 2y = 2(2) = 4}

∴ Original number = 21y

                              = 21(2)

                               = 42

Therefore,

\sf\red{Original \:number = 42}

Similar questions